LangChain学习之四种Memory模式使用

1. 学习背景

在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。视频地址:基于LangChain的大语言模型应用开发+构建和评估。

2. 四种memory模式

本实验基于jupyternotebook进行。

2.1 ConversationBufferMemory

import warnings
warnings.filterwarnings('ignore')
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemoryllm = ChatOpenAI(api_key = "XXXX",base_url = "XXXX",temperature=0.0
)memory = ConversationBufferMemory()
conversation = ConversationChain(llm=llm, memory = memory,verbose=True #设置为True可以看到模型的具体思考过程
)
conversation.predict(input="Hi, my name is Andrew")

输出如下:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: Hi, my name is Andrew
AI:> Finished chain.
"Hello Andrew! It's nice to meet you. My name is AI and I'm here to assist you with any questions or tasks you have. How can I help you today?"

继续测试

conversation.predict(input="What is 1+1?")

输出如下:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
Human: Hi, my name is Andrew
AI: Hello Andrew! It's nice to meet you. My name is AI and I'm here to assist you with any questions or tasks you have. How can I help you today?
Human: What is 1+1?
AI:> Finished chain.
'1+1 equals 2. This is a basic mathematical operation that can be solved by adding the two numbers together. Is there anything else I can assist you with?'

再次输入之前的问题

conversation.predict(input="What is my name?")

输出如下:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
Human: Hi, my name is Andrew
AI: Hello Andrew! It's nice to meet you. My name is AI and I'm here to assist you with any questions or tasks you have. How can I help you today?
Human: What is 1+1?
AI: 1+1 equals 2. This is a basic mathematical operation that can be solved by adding the two numbers together. Is there anything else I can assist you with?
Human: What is my name?
AI:> Finished chain.
'Your name is Andrew.'

我们可以清楚的看到每次LLM所记忆的内容,看看buffer有什么

print(memory.buffer)

输出如下:

Human: Hi, my name is Andrew
AI: Hello Andrew! It's nice to meet you. My name is AI and I'm here to assist you with any questions or tasks you have. How can I help you today?
Human: What is 1+1?
AI: 1+1 equals 2. This is a basic mathematical operation that can be solved by adding the two numbers together. Is there anything else I can assist you with?
Human: What is my name?
AI: Your name is Andrew.
memory.load_memory_variables({})

输出如下:

{'history': "Human: Hi, my name is Andrew\nAI: Hello Andrew! It's nice to meet you. My name is AI and I'm here to assist you with any questions or tasks you have. How can I help you today?\nHuman: What is 1+1?\nAI: 1+1 equals 2. This is a basic mathematical operation that can be solved by adding the two numbers together. Is there anything else I can assist you with?\nHuman: What is my name?\nAI: Your name is Andrew."}

接下来,我们尝试一下对ConversationBufferMemory的操作。

# 重新初始化memory
memory = ConversationBufferMemory()
memory.save_context({"input": "Hi"}, {"output": "What's up"})
print(memory.buffer)

输出如下:

Human: Hi
AI: What's up

以变量形式读取

memory.load_memory_variables({})

输出如下:

{'history': "Human: Hi\nAI: What's up"}

再往里存入内容

memory.save_context({"input": "Not much, just hanging"}, {"output": "Cool"})
memory.load_memory_variables({})

输出如下:

{'history': "Human: Hi\nAI: What's up\nHuman: Not much, just hanging\nAI: Cool"}

可以看到把所有的变量读取出来了。一般情况下,ConversationBufferMemory会将所有的信息读出。

2.2 ConversationBufferWindowMemory

from langchain.memory import ConversationBufferWindowMemory# 设置对话缓冲窗口的轮数为1
memory = ConversationBufferWindowMemory(k = 1)
memory.save_context({"input": "Hi"},{"output": "What's up"})
memory.save_context({"input": "Not much, just hanging"},{"output": "Cool"})
memory.load_memory_variables({})

输出如下:

{'history': 'Human: Not much, just hanging\nAI: Cool'}

可以看到输出的轮次只有一次对话长度。我们尝试用人机对话进行测试。

memory = ConversationBufferWindowMemory(k = 1)
conversation = ConversationChain(llm=llm, memory = memory,verbose= False
)conversation.predict(input="Hi, my name is Andrew")

输出如下:

"Hello Andrew! It's nice to meet you. My name is AI. I have access to a vast amount of information, so feel free to ask me anything you'd like to know!"

再进行对话

conversation.predict(input="What is 1+1?")

输出如下:

'1 + 1 equals 2. Is there anything else you would like to know?'

再进行对话

conversation.predict(input="What is my name?")

输出如下:

"I'm sorry, I do not have access to that information. Is there anything else you would like to ask?"

可以看到,设置对话窗口长度为1的时候,LLM的memory中只保留最后一轮的对话。

2.3 ConversationTokenBufferMemory

首先需要安装包,因为ConversationTokenBufferMemory会调用tiktoken包相关内容。

!pip install tiktoken
from langchain.memory import ConversationTokenBufferMemory# 设置对话过程中的记忆的长度最大为30个token
memory = ConversationTokenBufferMemory(llm=llm, max_token_limit=30)
memory.save_context({"input": "AI is what?!"},{"output": "Amazing!"})
memory.save_context({"input": "Backpropagation is what?"},{"output": "Beautiful!"})
memory.save_context({"input": "Chatbots are what?"}, {"output": "Charming!"})
memory.load_memory_variables({})

输出如下:

{'history': 'AI: Beautiful!\nHuman: Chatbots are what?\nAI: Charming!'}

2.4 ConversationSummaryBufferMemory

from langchain.memory import ConversationSummaryBufferMemoryschedule = "There is a meeting at 8am with your product team. \
You will need your powerpoint presentation prepared. \
9am-12pm have time to work on your LangChain \
project which will go quickly because Langchain is such a powerful tool. \
At Noon, lunch at the italian resturant with a customer who is driving \
from over an hour away to meet you to understand the latest in AI. \
Be sure to bring your laptop to show the latest LLM demo."memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=100)
memory.save_context({"input": "Hello"}, {"output": "What's up"})
memory.save_context({"input": "Not much, just hanging"},{"output": "Cool"})
memory.save_context({"input": "What is on the schedule today?"}, {"output": f"{schedule}"})
memory.load_memory_variables({})

输出如下:

{'history': "System: The human and AI have a brief exchange of greetings, and the AI informs the human of the day's schedule, including a meeting, work time on a project, and a lunch appointment with a customer interested in AI technology."}

可以看到,由于设置了最大token的长度为100,使用的是SummaryBuffer,因此LLM会对内存中的段落信息进行摘要存储。再继续对话,打开verbose查看chain细节。

conversation = ConversationChain(llm = llm, memory = memory,verbose = True
)
conversation.predict(input="What would be a good demo to show?")

输出如下:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
System: The human and AI have a brief exchange of greetings, and the AI informs the human of the day's schedule, including a meeting, work time on a project, and a lunch appointment with a customer interested in AI technology.
Human: What would be a good demo to show?
AI:> Finished chain.
"I suggest showcasing our AI's natural language processing capabilities, as well as its ability to analyze and interpret large datasets for actionable insights. We could also demonstrate its real-time decision-making capabilities and its integration with various platforms and applications. Additionally, we could show its ability to automate repetitive tasks and streamline workflow processes."

尝试读取memory中的信息。

memory.load_memory_variables({})

输出如下:

{'history': "System: The human and AI have a brief exchange of greetings, and the AI informs the human of the day's schedule, including a meeting, work time on a project, and a lunch appointment with a customer interested in AI technology.\nHuman: What would be a good demo to show?\nAI: I suggest showcasing our AI's natural language processing capabilities, as well as its ability to analyze and interpret large datasets for actionable insights. We could also demonstrate its real-time decision-making capabilities and its integration with various platforms and applications. Additionally, we could show its ability to automate repetitive tasks and streamline workflow processes."}

3. 思考

在构建应用时,如果token开销比较花钱,可以选择合适的对话memory进行存储关键信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/23277.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt Creator创建Python界面工程并打包为可执行exe文件

Qt Creator创建Python界面工程并打包为可执行exe文件_qtcreator创建python工程-CSDN博客

【QT】Qt Plugin开发

目录 插件是什么QT插件是什么 为什么要有插件开发插件开发优势插件和动态库区别 Qt PluginQT插件类型QT插件开发流程QT插件应用QT插件JSON文件 参考文章 插件是什么 插件(Plug-in,又称addin、add-in、addon或add-on,又译外挂)是一种遵循一定规范的应用程序接口编写出来的程序。…

C#中的as和is

在 C# 中,as 和 is 是用于类型转换和类型检查的操作符。 as 操作符: as 操作符用于尝试将一个对象转换为指定的引用类型或可空类型,如果转换失败,将返回 null。语法:expression as type示例: object obj &…

把文件从一台linux机器上传到另一台linux机器上

文章目录 1,第一种情况1.1 先测试2台机器是否可以互相通信1.2 对整个文件夹里面的所有内容进行传输的命令1.3 检查结果 2,第二种情况2.1,单个文件传输的命令 1,第一种情况 我这里有2台linux机器, 机器A:19…

高科技IT企业适合平滑替代FTP升级方案有哪些?

随着信息技术的飞速发展,传统的文件传输协议FTP已经逐渐不能满足现代企业的需求。特别是对于高科技IT企业来说,他们需要的不仅仅是一个简单的文件传输工具,而是一个能够提供高速、安全、稳定、易管理且兼容性强的解决方案。那么,在…

JFinal学习

JFinal 1、基于 JFinal 的 web 项目需要创建一个继承自 JFinalConfig 类的子类,该类用于对整个 web 项目进行配置。 JFinalConfig 子类需要实现六个抽象方法: 1)configConstant(Constants me) 此方法用来配置 JFinal 常量值,如开…

数学建模 —— 聚类分析(3)

目录 一、聚类分析概述 1.1 常用聚类要素的数据处理 1.1.1 总和标准化 1.1.2 标准差标准化 1.1.3 极大值标准化 1.1.4 极差的标准化 1.2 分类 1.2.1 快速聚类法(K-均值聚类) 1.2.2 系统聚类法(分层聚类法) 二、分类统计…

QPainter::end: Painter ended with 2 saved states 如何解决

QPainter::end: Painter ended with 2 saved states 是一个警告信息,它表明 QPainter 对象在结束时还存在未恢复的状态栈。这通常发生在 QPainter 对象被销毁(即调用其析构函数)时,如果存在未通过 restore() 方法平衡掉的 save() …

AutoMQ 生态集成 Tigris

Tigris[1]是一个全球分布式的兼容 S3 的对象存储服务,它允许你存储和访问任意数量的数据,具有广泛的使用场景。Tigris 会自动且智能地将数据分布到靠近用户的位置,让用户无需担心数据复制和缓存复杂性。 你可以将 Tigris 用于多种场景&#x…

EEPROM 怎么选

选择合适的EEPROM型号需要考虑多个因素,包括容量、供应商、性能参数、价格、可用性和兼容性等。以下是一个详细的步骤指南,帮助您在众多品牌和型号中做出选择: 1. 确定基本需求 首先确定您的应用对EEPROM的基本需求: 容量&…

Python里cv2是什么包?怎么安装使用?

在Python中,cv2是OpenCV库的模块名。OpenCV(全称Open Source Computer Vision Library)是一个基于开源的计算机视觉库,它提供了大量的图像处理和计算机视觉算法,如图像滤波、边缘检测、图像分割、特征提取、目标检测等…

快速排序——AcWing785.快速排序

AcWing785.快速排序 题目描述 785. 快速排序 - AcWing题库 运行代码 #include <iostream> #include <algorithm> using namespace std; const int N 1e66; int q[N]; void quick_sort(int q[], int l, int r) {if (l > r) return;int m l r >> 1;//…

LeetCode刷题之HOT100之不同路径

2024/6/6 小雨&#xff0c;没停。明天就要高考啦&#xff0c;回想五年前我也带着紧张与期待走过这些天&#xff0c;祝高考学子一切顺利。Anyway&#xff0c;早上一到实验室我就去看望我的栀子花&#xff0c;带着满怀的期待去看它长大了多少&#xff0c;是的&#xff0c;花苞还在…

《开源模型食用指南》基于Linux环境快速部署开源模型,更适合中国宝宝的部署教程

今天给大家推荐一个非常适合中国宝宝学习的专属大模型教程&#xff0c;也就是它《开源模型食用指南》&#xff01; 当前百模大战正值火热&#xff0c;开源LLM层出不穷。 如今国内外已经涌现了众多优秀开源LLM&#xff0c;国外如LLaMA、Alpaca&#xff0c;国内如ChatGLM、BaiCh…

想了解Prompt 技术?看这篇就够了!

最近看了 Meta-Prompt&#xff0c;发现 Prompt 的技术已经发展了几代了。真的要好好梳理一下了。首先是官方有 一个自己的 Prompt engineer &#xff0c; 这个是一定要认真学习的。 https://platform.openai.com/docs/guides/prompt-engineering 官方建议&#xff1a; 写作清…

使用pexpect检查SSH上的文件是否存在

使用 pexpect 模块可以在 Python 中执行命令并检查其输出。你可以使用 ssh 命令连接到远程服务器&#xff0c;并执行 ls 命令检查文件是否存在。下面我就列举几个我经常遇到的几个错误并做个详细的解决方案。 1、问题背景 用户需要编写一个 Python 脚本&#xff0c;以检查一个…

python面向过程与初始面向对象编程

让我们穿越到《龙珠》世界&#xff0c;一起揭开 面向对象编程 的神秘面纱吧。 面向过程编程与面向对象编程 天下第一武道会 选手登记 第 22 届天下第一武道会即将召开&#xff0c;各路武术高手齐聚一堂&#xff0c;其中最受瞩目的&#xff0c;当属卡卡罗特&#xff08;孙悟…

代码随想录训练营Day 51|力扣121. 买卖股票的最佳时机、122.买卖股票的最佳时机II

1.买卖股票的最佳时机 视频讲解&#xff1a;动态规划之 LeetCode&#xff1a;121.买卖股票的最佳时机1_哔哩哔哩_bilibili 代码随想录 代码&#xff1a; class Solution { public:int maxProfit(vector<int>& prices) {vector<vector<int>> dp(prices.s…

Golang time CST以及UTC介绍

package main import ( "fmt" "time" ) func main() { fmt.Println(time.Now()) fmt.Println(time.Now().UTC()) //Influxdb采用RFC3339格式确定起止时间&#xff0c;所以必须将格式进行对应转换&#xff0c;将其转换为该格式即可 fmt.Println(time.Now().…

线性数据结构-队列

队列&#xff08;Queue&#xff09;是一种先进先出&#xff08;First In First Out, FIFO&#xff09;的数据结构&#xff0c;它按照元素进入的顺序来处理元素。队列的基本操作包括&#xff1a; enqueue&#xff1a;在队列的末尾添加一个元素。dequeue&#xff1a;移除队列的第…