【YOLOv8改进[检测头Head]】YOLOv8的“新头”之动态头(DynamicHead)

目录

一 DynamicHead

二 YOLOv8的“新头”之动态头

1 总体修改

2 配置文件

3 训练

其他


一 DynamicHead

官方论文地址:https://arxiv.org/pdf/2106.08322.pdf

官方代码地址:GitCode - 开发者的代码家园

在计算机视觉应用中,目标检测是为了回答“是什么物体位于哪里”的问题的任务。如何提高目标检测头的性能已成为现有目标检测工作中的一个关键问题。

在本文中,提出了一种新的目标检测头,它将尺度感知、空间感知和任务感知的注意统一在一个框架中。提出了一种关注目标检测头的新视角。作为一个插件块,动态头可以灵活地集成到任何现有的目标检测器框架中,并在目标检测头中有效地应用了注意力机制,以提高其性能和效率。

下图说明了的动态头部方法。它包含三种不同的注意机制,每一种机制都侧重于不同的视角:尺度感知注意力空间感知注意力任务感知注意力。同时,还可视化了在每个注意模块之后特征图是如何改进的。

下图是动态头的详细设计。

(a) 显示了每个注意力模块的详细实施情况。

(b) 展示了如何将动态头部块应用于one-stage目标检测。

(c) 展示了如何将动态头部块应用于two-stage目标检测。

二 YOLOv8的“新头”之动态头

ultralytics的版本为8.1.47,如下图所示:

1 总体修改

① 添加DynamicHead.py文件

ultralytics/nn/modules目录下新建DynamicHead.py文件,内容如下所示:

import torch
import math
import torch.nn as nn
import torch.nn.functional as F
from mmcv.ops import ModulatedDeformConv2d
from ultralytics.utils.tal import dist2bbox, make_anchors__all__ = ['Detect_DynamicHead']def _make_divisible(v, divisor, min_value=None):if min_value is None:min_value = divisornew_v = max(min_value, int(v + divisor / 2) // divisor * divisor)# Make sure that round down does not go down by more than 10%.if new_v < 0.9 * v:new_v += divisorreturn new_vclass h_swish(nn.Module):def __init__(self, inplace=False):super(h_swish, self).__init__()self.inplace = inplacedef forward(self, x):return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0class h_sigmoid(nn.Module):def __init__(self, inplace=True, h_max=1):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)self.h_max = h_maxdef forward(self, x):return self.relu(x + 3) * self.h_max / 6class DYReLU(nn.Module):def __init__(self, inp, oup, reduction=4, lambda_a=1.0, K2=True, use_bias=True, use_spatial=False,init_a=[1.0, 0.0], init_b=[0.0, 0.0]):super(DYReLU, self).__init__()self.oup = oupself.lambda_a = lambda_a * 2self.K2 = K2self.avg_pool = nn.AdaptiveAvgPool2d(1)self.use_bias = use_biasif K2:self.exp = 4 if use_bias else 2else:self.exp = 2 if use_bias else 1self.init_a = init_aself.init_b = init_b# determine squeezeif reduction == 4:squeeze = inp // reductionelse:squeeze = _make_divisible(inp // reduction, 4)# print('reduction: {}, squeeze: {}/{}'.format(reduction, inp, squeeze))# print('init_a: {}, init_b: {}'.format(self.init_a, self.init_b))self.fc = nn.Sequential(nn.Linear(inp, squeeze),nn.ReLU(inplace=True),nn.Linear(squeeze, oup * self.exp),h_sigmoid())if use_spatial:self.spa = nn.Sequential(nn.Conv2d(inp, 1, kernel_size=1),nn.BatchNorm2d(1),)else:self.spa = Nonedef forward(self, x):if isinstance(x, list):x_in = x[0]x_out = x[1]else:x_in = xx_out = xb, c, h, w = x_in.size()y = self.avg_pool(x_in).view(b, c)y = self.fc(y).view(b, self.oup * self.exp, 1, 1)if self.exp == 4:a1, b1, a2, b2 = torch.split(y, self.oup, dim=1)a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]  # 1.0a2 = (a2 - 0.5) * self.lambda_a + self.init_a[1]b1 = b1 - 0.5 + self.init_b[0]b2 = b2 - 0.5 + self.init_b[1]out = torch.max(x_out * a1 + b1, x_out * a2 + b2)elif self.exp == 2:if self.use_bias:  # bias but not PLa1, b1 = torch.split(y, self.oup, dim=1)a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]  # 1.0b1 = b1 - 0.5 + self.init_b[0]out = x_out * a1 + b1else:a1, a2 = torch.split(y, self.oup, dim=1)a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]  # 1.0a2 = (a2 - 0.5) * self.lambda_a + self.init_a[1]out = torch.max(x_out * a1, x_out * a2)elif self.exp == 1:a1 = ya1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]  # 1.0out = x_out * a1if self.spa:ys = self.spa(x_in).view(b, -1)ys = F.softmax(ys, dim=1).view(b, 1, h, w) * h * wys = F.hardtanh(ys, 0, 3, inplace=True) / 3out = out * ysreturn outclass Conv3x3Norm(torch.nn.Module):def __init__(self, in_channels, out_channels, stride):super(Conv3x3Norm, self).__init__()self.conv = ModulatedDeformConv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)self.bn = nn.GroupNorm(num_groups=16, num_channels=out_channels)def forward(self, input, **kwargs):x = self.conv(input.contiguous(), **kwargs)x = self.bn(x)return xclass DyConv(nn.Module):def __init__(self, in_channels=256, out_channels=256, conv_func=Conv3x3Norm):super(DyConv, self).__init__()self.DyConv = nn.ModuleList()self.DyConv.append(conv_func(in_channels, out_channels, 1))self.DyConv.append(conv_func(in_channels, out_channels, 1))self.DyConv.append(conv_func(in_channels, out_channels, 2))self.AttnConv = nn.Sequential(nn.AdaptiveAvgPool2d(1),nn.Conv2d(in_channels, 1, kernel_size=1),nn.ReLU(inplace=True))self.h_sigmoid = h_sigmoid()self.relu = DYReLU(in_channels, out_channels)self.offset = nn.Conv2d(in_channels, 27, kernel_size=3, stride=1, padding=1)self.init_weights()def init_weights(self):for m in self.DyConv.modules():if isinstance(m, nn.Conv2d):nn.init.normal_(m.weight.data, 0, 0.01)if m.bias is not None:m.bias.data.zero_()for m in self.AttnConv.modules():if isinstance(m, nn.Conv2d):nn.init.normal_(m.weight.data, 0, 0.01)if m.bias is not None:m.bias.data.zero_()def forward(self, x):next_x = {}feature_names = list(x.keys())for level, name in enumerate(feature_names):feature = x[name]offset_mask = self.offset(feature)offset = offset_mask[:, :18, :, :]mask = offset_mask[:, 18:, :, :].sigmoid()conv_args = dict(offset=offset, mask=mask)temp_fea = [self.DyConv[1](feature, **conv_args)]if level > 0:temp_fea.append(self.DyConv[2](x[feature_names[level - 1]], **conv_args))if level < len(x) - 1:input = x[feature_names[level + 1]]temp_fea.append(F.interpolate(self.DyConv[0](input, **conv_args),size=[feature.size(2), feature.size(3)]))attn_fea = []res_fea = []for fea in temp_fea:res_fea.append(fea)attn_fea.append(self.AttnConv(fea))res_fea = torch.stack(res_fea)spa_pyr_attn = self.h_sigmoid(torch.stack(attn_fea))mean_fea = torch.mean(res_fea * spa_pyr_attn, dim=0, keepdim=False)next_x[name] = self.relu(mean_fea)return next_xdef autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class DFL(nn.Module):"""Integral module of Distribution Focal Loss (DFL).Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391"""def __init__(self, c1=16):"""Initialize a convolutional layer with a given number of input channels."""super().__init__()self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)x = torch.arange(c1, dtype=torch.float)self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))self.c1 = c1def forward(self, x):"""Applies a transformer layer on input tensor 'x' and returns a tensor."""b, c, a = x.shape  # batch, channels, anchorsreturn self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)class Detect_DynamicHead(nn.Module):"""YOLOv8 Detect head for detection models."""dynamic = False  # force grid reconstructionexport = False  # export modeshape = Noneanchors = torch.empty(0)  # initstrides = torch.empty(0)  # initdef __init__(self, nc=80, ch=()):"""Initializes the YOLOv8 detection layer with specified number of classes and channels."""super().__init__()self.nc = nc  # number of classesself.nl = len(ch)  # number of detection layersself.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)self.no = nc + self.reg_max * 4  # number of outputs per anchorself.stride = torch.zeros(self.nl)  # strides computed during buildc2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channelsself.cv2 = nn.ModuleList(nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()dyhead_tower = []for i in range(self.nl):channel = ch[i]dyhead_tower.append(DyConv(channel,channel,conv_func=Conv3x3Norm,))self.add_module('dyhead_tower', nn.Sequential(*dyhead_tower))def forward(self, x):tensor_dict = {i: tensor for i, tensor in enumerate(x)}x = self.dyhead_tower(tensor_dict)x = list(x.values())"""Concatenates and returns predicted bounding boxes and class probabilities."""shape = x[0].shape  # BCHWfor i in range(self.nl):x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)if self.training:return xelif self.dynamic or self.shape != shape:self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))self.shape = shapex_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'):  # avoid TF FlexSplitV opsbox = x_cat[:, :self.reg_max * 4]cls = x_cat[:, self.reg_max * 4:]else:box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.stridesif self.export and self.format in ('tflite', 'edgetpu'):# Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5:# https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309# See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695img_h = shape[2] * self.stride[0]img_w = shape[3] * self.stride[0]img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)dbox /= img_sizey = torch.cat((dbox, cls.sigmoid()), 1)return y if self.export else (y, x)def bias_init(self):"""Initialize Detect() biases, WARNING: requires stride availability."""m = self  # self.model[-1]  # Detect() module# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequencyfor a, b, s in zip(m.cv2, m.cv3, m.stride):  # froma[-1].bias.data[:] = 1.0  # boxb[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

② 修改ultralytics/nn/tasks.py文件

具体的修改内容如下图所示:

可以Ctrl+f然后搜索 “detect”方便后续锁定需要修改的位置。

2 配置文件

yolov8_DynamicHead.yaml的内容如下所示:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 12- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [512]] # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]] # cat head P5- [-1, 3, C2f, [512]] # 21 (P5/32-large)- [[15, 18, 21], 1, Detect_DynamicHead, [nc]] # Detect(P3, P4, P5)

3 训练

上述修改完毕后,开始训练吧!🌺🌺🌺

训练示例如下:

yolo task=detect mode=train model=cfg/models/v8/yolov8_DynamicHead.yaml data=cfg/datasets/coco128.yaml epochs=100 batch=16 device=cpu project=yolov8

其他

1 task.py

如果觉得替换部分内容不方便的话,可以直接复制下述文件对应替换原始py文件的内容:

  • 修改后的task.py
# Ultralytics YOLO 🚀, AGPL-3.0 licenseimport contextlib
from copy import deepcopy
from pathlib import Pathimport torch
import torch.nn as nnfrom ultralytics.nn.modules import (AIFI,C1,C2,C3,C3TR,OBB,SPP,SPPELAN,SPPF,ADown,Bottleneck,BottleneckCSP,C2f,C2fAttn,C3Ghost,C3x,CBFuse,CBLinear,Classify,Concat,Conv,Conv2,ConvTranspose,Detect,DWConv,DWConvTranspose2d,Focus,GhostBottleneck,GhostConv,HGBlock,HGStem,ImagePoolingAttn,Pose,RepC3,RepConv,RepNCSPELAN4,ResNetLayer,RTDETRDecoder,Segment,Silence,WorldDetect,
)
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
from ultralytics.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8OBBLoss, v8PoseLoss, v8SegmentationLoss
from ultralytics.utils.plotting import feature_visualization
from ultralytics.utils.torch_utils import (fuse_conv_and_bn,fuse_deconv_and_bn,initialize_weights,intersect_dicts,make_divisible,model_info,scale_img,time_sync,
)
from .modules.DynamicHead import Detect_DynamicHead #导入DynamicHead.py中的检测头
try:import thop
except ImportError:thop = Noneclass BaseModel(nn.Module):"""The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""def forward(self, x, *args, **kwargs):"""Forward pass of the model on a single scale. Wrapper for `_forward_once` method.Args:x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.Returns:(torch.Tensor): The output of the network."""if isinstance(x, dict):  # for cases of training and validating while training.return self.loss(x, *args, **kwargs)return self.predict(x, *args, **kwargs)def predict(self, x, profile=False, visualize=False, augment=False, embed=None):"""Perform a forward pass through the network.Args:x (torch.Tensor): The input tensor to the model.profile (bool):  Print the computation time of each layer if True, defaults to False.visualize (bool): Save the feature maps of the model if True, defaults to False.augment (bool): Augment image during prediction, defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): The last output of the model."""if augment:return self._predict_augment(x)return self._predict_once(x, profile, visualize, embed)def _predict_once(self, x, profile=False, visualize=False, embed=None):"""Perform a forward pass through the network.Args:x (torch.Tensor): The input tensor to the model.profile (bool):  Print the computation time of each layer if True, defaults to False.visualize (bool): Save the feature maps of the model if True, defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): The last output of the model."""y, dt, embeddings = [], [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)return xdef _predict_augment(self, x):"""Perform augmentations on input image x and return augmented inference."""LOGGER.warning(f"WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. "f"Reverting to single-scale inference instead.")return self._predict_once(x)def _profile_one_layer(self, m, x, dt):"""Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results tothe provided list.Args:m (nn.Module): The layer to be profiled.x (torch.Tensor): The input data to the layer.dt (list): A list to store the computation time of the layer.Returns:None"""c = m == self.model[-1] and isinstance(x, list)  # is final layer list, copy input as inplace fixflops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1e9 * 2 if thop else 0  # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")LOGGER.info(f"{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f}  {m.type}")if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")def fuse(self, verbose=True):"""Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve thecomputation efficiency.Returns:(nn.Module): The fused model is returned."""if not self.is_fused():for m in self.model.modules():if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, "bn"):if isinstance(m, Conv2):m.fuse_convs()m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update convdelattr(m, "bn")  # remove batchnormm.forward = m.forward_fuse  # update forwardif isinstance(m, ConvTranspose) and hasattr(m, "bn"):m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)delattr(m, "bn")  # remove batchnormm.forward = m.forward_fuse  # update forwardif isinstance(m, RepConv):m.fuse_convs()m.forward = m.forward_fuse  # update forwardself.info(verbose=verbose)return selfdef is_fused(self, thresh=10):"""Check if the model has less than a certain threshold of BatchNorm layers.Args:thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.Returns:(bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise."""bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k)  # normalization layers, i.e. BatchNorm2d()return sum(isinstance(v, bn) for v in self.modules()) < thresh  # True if < 'thresh' BatchNorm layers in modeldef info(self, detailed=False, verbose=True, imgsz=640):"""Prints model information.Args:detailed (bool): if True, prints out detailed information about the model. Defaults to Falseverbose (bool): if True, prints out the model information. Defaults to Falseimgsz (int): the size of the image that the model will be trained on. Defaults to 640"""return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)def _apply(self, fn):"""Applies a function to all the tensors in the model that are not parameters or registered buffers.Args:fn (function): the function to apply to the modelReturns:(BaseModel): An updated BaseModel object."""self = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, (Detect, Detect_DynamicHead)):  # includes all Detect subclasses like Segment, Pose, OBB, WorldDetectm.stride = fn(m.stride)m.anchors = fn(m.anchors)m.strides = fn(m.strides)return selfdef load(self, weights, verbose=True):"""Load the weights into the model.Args:weights (dict | torch.nn.Module): The pre-trained weights to be loaded.verbose (bool, optional): Whether to log the transfer progress. Defaults to True."""model = weights["model"] if isinstance(weights, dict) else weights  # torchvision models are not dictscsd = model.float().state_dict()  # checkpoint state_dict as FP32csd = intersect_dicts(csd, self.state_dict())  # intersectself.load_state_dict(csd, strict=False)  # loadif verbose:LOGGER.info(f"Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights")def loss(self, batch, preds=None):"""Compute loss.Args:batch (dict): Batch to compute loss onpreds (torch.Tensor | List[torch.Tensor]): Predictions."""if not hasattr(self, "criterion"):self.criterion = self.init_criterion()preds = self.forward(batch["img"]) if preds is None else predsreturn self.criterion(preds, batch)def init_criterion(self):"""Initialize the loss criterion for the BaseModel."""raise NotImplementedError("compute_loss() needs to be implemented by task heads")class DetectionModel(BaseModel):"""YOLOv8 detection model."""def __init__(self, cfg="yolov8n.yaml", ch=3, nc=None, verbose=True):  # model, input channels, number of classes"""Initialize the YOLOv8 detection model with the given config and parameters."""super().__init__()self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict# Define modelch = self.yaml["ch"] = self.yaml.get("ch", ch)  # input channelsif nc and nc != self.yaml["nc"]:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml["nc"] = nc  # override YAML valueself.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelistself.names = {i: f"{i}" for i in range(self.yaml["nc"])}  # default names dictself.inplace = self.yaml.get("inplace", True)# Build stridesm = self.model[-1]  # Detect()if isinstance(m, (Detect, Detect_DynamicHead)):  # includes all Detect subclasses like Segment, Pose, OBB, WorldDetects = 256  # 2x min stridem.inplace = self.inplaceforward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x)m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forwardself.stride = m.stridem.bias_init()  # only run onceelse:self.stride = torch.Tensor([32])  # default stride for i.e. RTDETR# Init weights, biasesinitialize_weights(self)if verbose:self.info()LOGGER.info("")def _predict_augment(self, x):"""Perform augmentations on input image x and return augmented inference and train outputs."""img_size = x.shape[-2:]  # height, widths = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = super().predict(xi)[0]  # forwardyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn torch.cat(y, -1), None  # augmented inference, train@staticmethoddef _descale_pred(p, flips, scale, img_size, dim=1):"""De-scale predictions following augmented inference (inverse operation)."""p[:, :4] /= scale  # de-scalex, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)if flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrreturn torch.cat((x, y, wh, cls), dim)def _clip_augmented(self, y):"""Clip YOLO augmented inference tails."""nl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4**x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[-1] // g) * sum(4**x for x in range(e))  # indicesy[0] = y[0][..., :-i]  # largei = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][..., i:]  # smallreturn ydef init_criterion(self):"""Initialize the loss criterion for the DetectionModel."""return v8DetectionLoss(self)class OBBModel(DetectionModel):"""YOLOv8 Oriented Bounding Box (OBB) model."""def __init__(self, cfg="yolov8n-obb.yaml", ch=3, nc=None, verbose=True):"""Initialize YOLOv8 OBB model with given config and parameters."""super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)def init_criterion(self):"""Initialize the loss criterion for the model."""return v8OBBLoss(self)class SegmentationModel(DetectionModel):"""YOLOv8 segmentation model."""def __init__(self, cfg="yolov8n-seg.yaml", ch=3, nc=None, verbose=True):"""Initialize YOLOv8 segmentation model with given config and parameters."""super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)def init_criterion(self):"""Initialize the loss criterion for the SegmentationModel."""return v8SegmentationLoss(self)class PoseModel(DetectionModel):"""YOLOv8 pose model."""def __init__(self, cfg="yolov8n-pose.yaml", ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):"""Initialize YOLOv8 Pose model."""if not isinstance(cfg, dict):cfg = yaml_model_load(cfg)  # load model YAMLif any(data_kpt_shape) and list(data_kpt_shape) != list(cfg["kpt_shape"]):LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")cfg["kpt_shape"] = data_kpt_shapesuper().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)def init_criterion(self):"""Initialize the loss criterion for the PoseModel."""return v8PoseLoss(self)class ClassificationModel(BaseModel):"""YOLOv8 classification model."""def __init__(self, cfg="yolov8n-cls.yaml", ch=3, nc=None, verbose=True):"""Init ClassificationModel with YAML, channels, number of classes, verbose flag."""super().__init__()self._from_yaml(cfg, ch, nc, verbose)def _from_yaml(self, cfg, ch, nc, verbose):"""Set YOLOv8 model configurations and define the model architecture."""self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict# Define modelch = self.yaml["ch"] = self.yaml.get("ch", ch)  # input channelsif nc and nc != self.yaml["nc"]:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml["nc"] = nc  # override YAML valueelif not nc and not self.yaml.get("nc", None):raise ValueError("nc not specified. Must specify nc in model.yaml or function arguments.")self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelistself.stride = torch.Tensor([1])  # no stride constraintsself.names = {i: f"{i}" for i in range(self.yaml["nc"])}  # default names dictself.info()@staticmethoddef reshape_outputs(model, nc):"""Update a TorchVision classification model to class count 'n' if required."""name, m = list((model.model if hasattr(model, "model") else model).named_children())[-1]  # last moduleif isinstance(m, Classify):  # YOLO Classify() headif m.linear.out_features != nc:m.linear = nn.Linear(m.linear.in_features, nc)elif isinstance(m, nn.Linear):  # ResNet, EfficientNetif m.out_features != nc:setattr(model, name, nn.Linear(m.in_features, nc))elif isinstance(m, nn.Sequential):types = [type(x) for x in m]if nn.Linear in types:i = types.index(nn.Linear)  # nn.Linear indexif m[i].out_features != nc:m[i] = nn.Linear(m[i].in_features, nc)elif nn.Conv2d in types:i = types.index(nn.Conv2d)  # nn.Conv2d indexif m[i].out_channels != nc:m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)def init_criterion(self):"""Initialize the loss criterion for the ClassificationModel."""return v8ClassificationLoss()class RTDETRDetectionModel(DetectionModel):"""RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class.This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating boththe training and inference processes. RTDETR is an object detection and tracking model that extends from theDetectionModel base class.Attributes:cfg (str): The configuration file path or preset string. Default is 'rtdetr-l.yaml'.ch (int): Number of input channels. Default is 3 (RGB).nc (int, optional): Number of classes for object detection. Default is None.verbose (bool): Specifies if summary statistics are shown during initialization. Default is True.Methods:init_criterion: Initializes the criterion used for loss calculation.loss: Computes and returns the loss during training.predict: Performs a forward pass through the network and returns the output."""def __init__(self, cfg="rtdetr-l.yaml", ch=3, nc=None, verbose=True):"""Initialize the RTDETRDetectionModel.Args:cfg (str): Configuration file name or path.ch (int): Number of input channels.nc (int, optional): Number of classes. Defaults to None.verbose (bool, optional): Print additional information during initialization. Defaults to True."""super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)def init_criterion(self):"""Initialize the loss criterion for the RTDETRDetectionModel."""from ultralytics.models.utils.loss import RTDETRDetectionLossreturn RTDETRDetectionLoss(nc=self.nc, use_vfl=True)def loss(self, batch, preds=None):"""Compute the loss for the given batch of data.Args:batch (dict): Dictionary containing image and label data.preds (torch.Tensor, optional): Precomputed model predictions. Defaults to None.Returns:(tuple): A tuple containing the total loss and main three losses in a tensor."""if not hasattr(self, "criterion"):self.criterion = self.init_criterion()img = batch["img"]# NOTE: preprocess gt_bbox and gt_labels to list.bs = len(img)batch_idx = batch["batch_idx"]gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]targets = {"cls": batch["cls"].to(img.device, dtype=torch.long).view(-1),"bboxes": batch["bboxes"].to(device=img.device),"batch_idx": batch_idx.to(img.device, dtype=torch.long).view(-1),"gt_groups": gt_groups,}preds = self.predict(img, batch=targets) if preds is None else predsdec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1]if dn_meta is None:dn_bboxes, dn_scores = None, Noneelse:dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta["dn_num_split"], dim=2)dn_scores, dec_scores = torch.split(dec_scores, dn_meta["dn_num_split"], dim=2)dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes])  # (7, bs, 300, 4)dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores])loss = self.criterion((dec_bboxes, dec_scores), targets, dn_bboxes=dn_bboxes, dn_scores=dn_scores, dn_meta=dn_meta)# NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses.return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ["loss_giou", "loss_class", "loss_bbox"]], device=img.device)def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None):"""Perform a forward pass through the model.Args:x (torch.Tensor): The input tensor.profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.batch (dict, optional): Ground truth data for evaluation. Defaults to None.augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): Model's output tensor."""y, dt, embeddings = [], [], []  # outputsfor m in self.model[:-1]:  # except the head partif m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)head = self.model[-1]x = head([y[j] for j in head.f], batch)  # head inferencereturn xclass WorldModel(DetectionModel):"""YOLOv8 World Model."""def __init__(self, cfg="yolov8s-world.yaml", ch=3, nc=None, verbose=True):"""Initialize YOLOv8 world model with given config and parameters."""self.txt_feats = torch.randn(1, nc or 80, 512)  # features placeholderself.clip_model = None  # CLIP model placeholdersuper().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)def set_classes(self, text, batch=80, cache_clip_model=True):"""Set classes in advance so that model could do offline-inference without clip model."""try:import clipexcept ImportError:check_requirements("git+https://github.com/ultralytics/CLIP.git")import clipif (not getattr(self, "clip_model", None) and cache_clip_model):  # for backwards compatibility of models lacking clip_model attributeself.clip_model = clip.load("ViT-B/32")[0]model = self.clip_model if cache_clip_model else clip.load("ViT-B/32")[0]device = next(model.parameters()).devicetext_token = clip.tokenize(text).to(device)txt_feats = [model.encode_text(token).detach() for token in text_token.split(batch)]txt_feats = txt_feats[0] if len(txt_feats) == 1 else torch.cat(txt_feats, dim=0)txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)self.txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1])self.model[-1].nc = len(text)def predict(self, x, profile=False, visualize=False, txt_feats=None, augment=False, embed=None):"""Perform a forward pass through the model.Args:x (torch.Tensor): The input tensor.profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.txt_feats (torch.Tensor): The text features, use it if it's given. Defaults to None.augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): Model's output tensor."""txt_feats = (self.txt_feats if txt_feats is None else txt_feats).to(device=x.device, dtype=x.dtype)if len(txt_feats) != len(x):txt_feats = txt_feats.repeat(len(x), 1, 1)ori_txt_feats = txt_feats.clone()y, dt, embeddings = [], [], []  # outputsfor m in self.model:  # except the head partif m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if isinstance(m, C2fAttn):x = m(x, txt_feats)elif isinstance(m, WorldDetect):x = m(x, ori_txt_feats)elif isinstance(m, ImagePoolingAttn):txt_feats = m(x, txt_feats)else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)return xdef loss(self, batch, preds=None):"""Compute loss.Args:batch (dict): Batch to compute loss on.preds (torch.Tensor | List[torch.Tensor]): Predictions."""if not hasattr(self, "criterion"):self.criterion = self.init_criterion()if preds is None:preds = self.forward(batch["img"], txt_feats=batch["txt_feats"])return self.criterion(preds, batch)class Ensemble(nn.ModuleList):"""Ensemble of models."""def __init__(self):"""Initialize an ensemble of models."""super().__init__()def forward(self, x, augment=False, profile=False, visualize=False):"""Function generates the YOLO network's final layer."""y = [module(x, augment, profile, visualize)[0] for module in self]# y = torch.stack(y).max(0)[0]  # max ensemble# y = torch.stack(y).mean(0)  # mean ensembley = torch.cat(y, 2)  # nms ensemble, y shape(B, HW, C)return y, None  # inference, train output# Functions ------------------------------------------------------------------------------------------------------------@contextlib.contextmanager
def temporary_modules(modules=None):"""Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`).This function can be used to change the module paths during runtime. It's useful when refactoring code,where you've moved a module from one location to another, but you still want to support the old importpaths for backwards compatibility.Args:modules (dict, optional): A dictionary mapping old module paths to new module paths.Example:```pythonwith temporary_modules({'old.module.path': 'new.module.path'}):import old.module.path  # this will now import new.module.path```Note:The changes are only in effect inside the context manager and are undone once the context manager exits.Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in largerapplications or libraries. Use this function with caution."""if not modules:modules = {}import importlibimport systry:# Set modules in sys.modules under their old namefor old, new in modules.items():sys.modules[old] = importlib.import_module(new)yieldfinally:# Remove the temporary module pathsfor old in modules:if old in sys.modules:del sys.modules[old]def torch_safe_load(weight):"""This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,it catches the error, logs a warning message, and attempts to install the missing module via thecheck_requirements() function. After installation, the function again attempts to load the model using torch.load().Args:weight (str): The file path of the PyTorch model.Returns:(dict): The loaded PyTorch model."""from ultralytics.utils.downloads import attempt_download_assetcheck_suffix(file=weight, suffix=".pt")file = attempt_download_asset(weight)  # search online if missing locallytry:with temporary_modules({"ultralytics.yolo.utils": "ultralytics.utils","ultralytics.yolo.v8": "ultralytics.models.yolo","ultralytics.yolo.data": "ultralytics.data",}):  # for legacy 8.0 Classify and Pose modelsckpt = torch.load(file, map_location="cpu")except ModuleNotFoundError as e:  # e.name is missing module nameif e.name == "models":raise TypeError(emojis(f"ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained "f"with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with "f"YOLOv8 at https://github.com/ultralytics/ultralytics."f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from eLOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements."f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")check_requirements(e.name)  # install missing moduleckpt = torch.load(file, map_location="cpu")if not isinstance(ckpt, dict):# File is likely a YOLO instance saved with i.e. torch.save(model, "saved_model.pt")LOGGER.warning(f"WARNING ⚠️ The file '{weight}' appears to be improperly saved or formatted. "f"For optimal results, use model.save('filename.pt') to correctly save YOLO models.")ckpt = {"model": ckpt.model}return ckpt, file  # loaddef attempt_load_weights(weights, device=None, inplace=True, fuse=False):"""Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a."""ensemble = Ensemble()for w in weights if isinstance(weights, list) else [weights]:ckpt, w = torch_safe_load(w)  # load ckptargs = {**DEFAULT_CFG_DICT, **ckpt["train_args"]} if "train_args" in ckpt else None  # combined argsmodel = (ckpt.get("ema") or ckpt["model"]).to(device).float()  # FP32 model# Model compatibility updatesmodel.args = args  # attach args to modelmodel.pt_path = w  # attach *.pt file path to modelmodel.task = guess_model_task(model)if not hasattr(model, "stride"):model.stride = torch.tensor([32.0])# Appendensemble.append(model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval())  # model in eval mode# Module updatesfor m in ensemble.modules():if hasattr(m, "inplace"):m.inplace = inplaceelif isinstance(m, nn.Upsample) and not hasattr(m, "recompute_scale_factor"):m.recompute_scale_factor = None  # torch 1.11.0 compatibility# Return modelif len(ensemble) == 1:return ensemble[-1]# Return ensembleLOGGER.info(f"Ensemble created with {weights}\n")for k in "names", "nc", "yaml":setattr(ensemble, k, getattr(ensemble[0], k))ensemble.stride = ensemble[int(torch.argmax(torch.tensor([m.stride.max() for m in ensemble])))].strideassert all(ensemble[0].nc == m.nc for m in ensemble), f"Models differ in class counts {[m.nc for m in ensemble]}"return ensembledef attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):"""Loads a single model weights."""ckpt, weight = torch_safe_load(weight)  # load ckptargs = {**DEFAULT_CFG_DICT, **(ckpt.get("train_args", {}))}  # combine model and default args, preferring model argsmodel = (ckpt.get("ema") or ckpt["model"]).to(device).float()  # FP32 model# Model compatibility updatesmodel.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to modelmodel.pt_path = weight  # attach *.pt file path to modelmodel.task = guess_model_task(model)if not hasattr(model, "stride"):model.stride = torch.tensor([32.0])model = model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval()  # model in eval mode# Module updatesfor m in model.modules():if hasattr(m, "inplace"):m.inplace = inplaceelif isinstance(m, nn.Upsample) and not hasattr(m, "recompute_scale_factor"):m.recompute_scale_factor = None  # torch 1.11.0 compatibility# Return model and ckptreturn model, ckptdef parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)"""Parse a YOLO model.yaml dictionary into a PyTorch model."""import ast# Argsmax_channels = float("inf")nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))if scales:scale = d.get("scale")if not scale:scale = tuple(scales.keys())[0]LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")depth, width, max_channels = scales[scale]if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()if verbose:LOGGER.info(f"{colorstr('activation:')} {act}")  # printif verbose:LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")ch = [ch]layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, argsm = getattr(torch.nn, m[3:]) if "nn." in m else globals()[m]  # get modulefor j, a in enumerate(args):if isinstance(a, str):with contextlib.suppress(ValueError):args[j] = locals()[a] if a in locals() else ast.literal_eval(a)n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gainif m in {Classify,Conv,ConvTranspose,GhostConv,Bottleneck,GhostBottleneck,SPP,SPPF,DWConv,Focus,BottleneckCSP,C1,C2,C2f,RepNCSPELAN4,ADown,SPPELAN,C2fAttn,C3,C3TR,C3Ghost,nn.ConvTranspose2d,DWConvTranspose2d,C3x,RepC3,}:c1, c2 = ch[f], args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)if m is C2fAttn:args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channelsargs[2] = int(max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2])  # num headsargs = [c1, c2, *args[1:]]if m in {BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3}:args.insert(2, n)  # number of repeatsn = 1elif m is AIFI:args = [ch[f], *args]elif m in {HGStem, HGBlock}:c1, cm, c2 = ch[f], args[0], args[1]args = [c1, cm, c2, *args[2:]]if m is HGBlock:args.insert(4, n)  # number of repeatsn = 1elif m is ResNetLayer:c2 = args[1] if args[3] else args[1] * 4elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m in {Detect, WorldDetect, Segment, Pose, OBB, ImagePoolingAttn, Detect_DynamicHead}:args.append([ch[x] for x in f])if m is Segment:args[2] = make_divisible(min(args[2], max_channels) * width, 8)elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1args.insert(1, [ch[x] for x in f])elif m is CBLinear:c2 = args[0]c1 = ch[f]args = [c1, c2, *args[1:]]elif m is CBFuse:c2 = ch[f[-1]]else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace("__main__.", "")  # module typem.np = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type = i, f, t  # attach index, 'from' index, typeif verbose:LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}")  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)def yaml_model_load(path):"""Load a YOLOv8 model from a YAML file."""import repath = Path(path)if path.stem in (f"yolov{d}{x}6" for x in "nsmlx" for d in (5, 8)):new_stem = re.sub(r"(\d+)([nslmx])6(.+)?$", r"\1\2-p6\3", path.stem)LOGGER.warning(f"WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.")path = path.with_name(new_stem + path.suffix)unified_path = re.sub(r"(\d+)([nslmx])(.+)?$", r"\1\3", str(path))  # i.e. yolov8x.yaml -> yolov8.yamlyaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)d = yaml_load(yaml_file)  # model dictd["scale"] = guess_model_scale(path)d["yaml_file"] = str(path)return ddef guess_model_scale(model_path):"""Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. The functionuses regular expression matching to find the pattern of the model scale in the YAML file name, which is denoted byn, s, m, l, or x. The function returns the size character of the model scale as a string.Args:model_path (str | Path): The path to the YOLO model's YAML file.Returns:(str): The size character of the model's scale, which can be n, s, m, l, or x."""with contextlib.suppress(AttributeError):import rereturn re.search(r"yolov\d+([nslmx])", Path(model_path).stem).group(1)  # n, s, m, l, or xreturn ""def guess_model_task(model):"""Guess the task of a PyTorch model from its architecture or configuration.Args:model (nn.Module | dict): PyTorch model or model configuration in YAML format.Returns:(str): Task of the model ('detect', 'segment', 'classify', 'pose').Raises:SyntaxError: If the task of the model could not be determined."""def cfg2task(cfg):"""Guess from YAML dictionary."""m = cfg["head"][-1][-2].lower()  # output module nameif m in {"classify", "classifier", "cls", "fc"}:return "classify"if m == "detect":return "detect"if m == "segment":return "segment"if m == "pose":return "pose"if m == "obb":return "obb"else:return "detect"# Guess from model cfgif isinstance(model, dict):with contextlib.suppress(Exception):return cfg2task(model)# Guess from PyTorch modelif isinstance(model, nn.Module):  # PyTorch modelfor x in "model.args", "model.model.args", "model.model.model.args":with contextlib.suppress(Exception):return eval(x)["task"]for x in "model.yaml", "model.model.yaml", "model.model.model.yaml":with contextlib.suppress(Exception):return cfg2task(eval(x))for m in model.modules():if isinstance(m, Segment):return "segment"elif isinstance(m, Classify):return "classify"elif isinstance(m, Pose):return "pose"elif isinstance(m, OBB):return "obb"elif isinstance(m, (Detect, WorldDetect, Detect_DynamicHead)):return "detect"# Guess from model filenameif isinstance(model, (str, Path)):model = Path(model)if "-seg" in model.stem or "segment" in model.parts:return "segment"elif "-cls" in model.stem or "classify" in model.parts:return "classify"elif "-pose" in model.stem or "pose" in model.parts:return "pose"elif "-obb" in model.stem or "obb" in model.parts:return "obb"elif "detect" in model.parts:return "detect"# Unable to determine task from modelLOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. ""Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify','pose' or 'obb'.")return "detect"  # assume detect

2 报错处理

【报错】💔💔💔

ModuleNotFoundError: No module named 'mmcv'

【解决方法】💜💜💜

pip3 install mmcv -i https://pypi.tuna.tsinghua.edu.cn/simple

【测试】💚💚💚

python3 -c "from mmcv.ops import ModulatedDeformConv2d"

无报错说明安装成功。💕💕💕💕💕💕

到此,本文分享的内容就结束啦!遇见便是缘,感恩遇见!!!💛 💙 💜 ❤️ 💚

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/2279.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第四百七十五回

文章目录 1. 概念介绍2. 功能与用法2.1 主要功能2.2 使用方法 3. 示例代码4. 内容总结 我们在上一章回中介绍了"四个bublue包对比与总结"相关的内容&#xff0c;本章回中将介绍Get包.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在本章回中将介…

力扣HOT100 - 2. 两数相加

解题思路&#xff1a; 缺位的节点进行补零处理&#xff0c;如97323补充为973023 注意相加的进位问题 class Solution {public ListNode addTwoNumbers(ListNode l1, ListNode l2) {ListNode head null, tail null;int carry 0;while (l1 ! null || l2 ! null) {int n1 l…

2013-2021年各省经济韧性相关测度指标面板数据

2013-2021年各省经济韧性相关测度指标面板数据 1、时间&#xff1a;2013-2021年 2、指标&#xff1a;城镇化率 %、财政科学技术支出&#xff08;亿元&#xff09;、万人高等教育在校人数&#xff08;万人&#xff09;、财政教育支出&#xff08;亿元&#xff09;、第三产业占…

semaphore信号量使用+原理分析

1.概述 Semaphore 信号量&#xff0c;相当于一个计数器&#xff0c;通常用来限制线程的数量。 每个线程操作前会先获取一个许可证&#xff0c;逻辑处理完成之后就归还这个许可证。 通俗的解释&#xff1a;相当于一个停车场&#xff0c;有10个停车位&#xff0c;进来一个车&am…

本地部署Docker容器可视化图形管理工具DockerUI并实现无公网IP远程访问——“cpolar内网穿透”

文章目录 前言1. 安装部署DockerUI2. 安装cpolar内网穿透3. 配置DockerUI公网访问地址4. 公网远程访问DockerUI5. 固定DockerUI公网地址 前言 DockerUI是一个docker容器镜像的可视化图形化管理工具。DockerUI可以用来轻松构建、管理和维护docker环境。它是完全开源且免费的。基…

stack、queue(priority_queue)的模拟实现和deque的简单介绍

stack和queue(priority_queue) 1. 容器适配器 适配器(Adapter)&#xff1a;一种用来修饰容器(Containers)或仿函数(Functors)或迭代器(Iterator)接口的东西。 适配器是一种设计模式&#xff0c;该模式将一个类的接口转换成客户希望的另外一个接口。 现实中拿插座来说&#xf…

C语言进阶课程学习记录- 函数与宏分析

C语言进阶课程学习记录- 函数与宏分析 实验-宏和函数实验-宏的副作用实验-宏的妙用小结 本文学习自狄泰软件学院 唐佐林老师的 C语言进阶课程&#xff0c;图片全部来源于课程PPT&#xff0c;仅用于个人学习记录 实验-宏和函数 #include <stdio.h>#define RESET(p, len) …

【Nginx】centos和Ubuntu操作系统下载Nginx配置文件并启动Nginx服务详解

目录 &#x1f337; 安装Nginx环境 &#x1f340; centos操作系统 &#x1f340; ubuntu操作系统 &#x1f337; 安装Nginx环境 以下是在linux系统中安装Nginx的步骤&#xff1a; 查看服务器属于哪个操作系统 cat /etc/os-release安装 yum&#xff1a; 如果你确定你的系统…

Spring是如何解决循环依赖的

简介 所谓循环依赖指的是&#xff1a;BeanA对象的创建依赖于BeanB&#xff0c;BeanB对象的创建也依赖于BeanA&#xff0c;这就造成了死循环&#xff0c;如果不做处理的话势必会造成栈溢出。Spring通过提前曝光机制&#xff0c;利用三级缓存解决循环依赖问题。 变量描述single…

【C语言__指针01__复习篇11】

目录 前言 一、什么是指针 二、计算机中常见的单位 三、CPU是怎样找到一块内存空间的 四、如何得到变量的地址 五、指针变量 六、解引用指针变量的作用 七、指针变量的大小 八、指针变量类型的意义 8.1 指针的解引用 8.2 指针-整数 九、void*指针 十、const修饰变…

PCB走线宽度、PCB走线宽度计算、PCB走线宽度和电流

目录 一、什么是PCB走线宽度&#xff1f; 二、什么是走线&#xff1f; 三、哪些因素对走线宽度至关重要&#xff1f; 1、信号走线 2、电源走线 3、直线宽度和信号反射 四、怎么计算PCB走线宽度&#xff1f; 1、使用PCB走线宽度计算器 2、使用方程式 五、怎么计算PCB 走…

25计算机考研院校数据分析 | 上海交通大学

上海交通大学电子信息与电气工程学院成立于2001年12月&#xff0c;其前身可湖源至百年前的电机专科&#xff0c;具有中国电气工程师“摇篮”之美称。50年代根据学科发展需要分为电工与计算机科学系(三系)和电子工程系(四系)。1985年&#xff0c;三系和四系合并&#xff0c;成立…

Abaqus2024 安装教程(附免费安装包资源)

鼠标右击软件压缩包&#xff0c;选择“解压到Abaqus2024”。 鼠标右击“此电脑”&#xff0c;选择“属性”。 点击“高级系统设置”。 点击“环境变量”。 点击“新建”。 变量名输入&#xff1a;NOLICENSECHECK 变量值输入&#xff1a;true 然后点击“确定”。 点击“确定”。…

【大模型系列】预训练

数据 数据预处理 预处理流程&#xff1a; 原始语料库—>质量过滤&#xff08;语种过滤、统计过滤、关键词过滤、分类器过滤&#xff09;—>敏感内容过滤&#xff08;有毒内容、隐私内容PII&#xff09;—>数据去重&#xff08;句子级别、文档级别、数据集级别&#…

【vue】el-tree的新增/编辑/删除节点

1、概述 关于树形结构的新增同级节点&#xff0c;新增子级节点&#xff0c;修改节点名称&#xff0c;删除节点等四种操作&#xff0c;各种参数配置完全继承el-tree&#xff0c;本篇使用vue2 element-ui 2、效果图展示 3、调用方式 <template><Tree:data"tree…

椋鸟数据结构笔记#11:排序·下

文章目录 外排序&#xff08;外部排序&#xff09;文件拆分并排序归并文件两个文件归并多文件归并优化 萌新的学习笔记&#xff0c;写错了恳请斧正。 外排序&#xff08;外部排序&#xff09; 当数据量非常庞大以至于无法全部写入内存时&#xff0c;我们应该怎么排序这些数据呢…

Route Discovery Route Repair

1. Route Discovery 当单播消息从一台设备发送到另一台设备&#xff0c;并且没有预先存在的路由时&#xff0c;会发起路由发现。 我们假设没有现有的路由&#xff0c;因此网络软件将开始路由发现过程。为简单起见&#xff0c;假设所有设备的路由表都为空。 以设备A向设备C发送…

[lesson49]多态的概念和意义

多态的概念和意义 函数重写回顾 父类中被重写的函数依然会继承给子类 子类中重写的函数将覆盖父类中的函数 通过作用域分辨符(::)访问父类中的同名成员 多态的概念和意义 面向对象中期望的行为 根据实际的对象类型判断如何调用重写函数父类指针(引用)指向 父类对象则调用…

【LeetCode】---118.杨辉三角

一、题目解析&#xff1a; 二、知识回顾&#xff1a; 1.二维数组&#xff1a; 2. C语言中的二维数组访问方式和vector二维数组的访问&#xff0c; 不同区别&#xff1a; &#xff08;1&#xff09;表面是一样的&#xff0c;但底层不同&#xff01; &#xff08;2&#xff09;静…

JAVA 项目<果园之窗>_2

上节主要是理论流程&#xff0c;这次直接用实际例子过一遍整个流程 目标是向数据库添加一个员工 上述是前端页面&#xff0c;点击保存 浏览器向我后端发送http请求 后端这一部分专门接收employee请求 在这里对http post请求进行转换成JAVA数据&#xff0c;并处理数据&#xff…