一文搞懂 Transformer(总体架构 三种注意力层)

本文将从Transformer的本质、Transformer_的原理_、_Transformer的应用__三个方面,带您一文搞懂Transformer(总体架构 & 三种注意力层)。

图片
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

总结链接如下:《大模型实战宝典》(2024版) 正式发布!


一、Transformer 的本质

Transformer的起源:Google Brain 翻译团队通过论文《Attention is all you need》提出了一种全新的简单网络架构——Transformer,它完全基于注意力机制,摒弃了循环和卷积操作。

图片

注意力机制是全部所需

主流的序列转换模型RNN:Transformer出来之前,主流的序列转换模型都基于复杂的循环神经网络(RNN),包含编码器和解码器两部分。当时表现最好的模型还通过注意力机制将编码器和解码器连接起来。

图片

Transformer vs RNN

循环神经网络(RNN)、特别是长短时记忆网络(LSTM)和门控循环单元网络(GRU),已经在序列建模和转换问题中牢固确立了其作为最先进方法的地位,这些问题包括语言建模和机器翻译。

图片

RNN LSTM GRU

RNN编码器-解码器架构存在一个显著的缺陷:处理长序列时,会存在信息丢失。

编码器在转化序列x1, x2, x3, x4为单个向量c时,信息可能丢失。因为所有信息被压缩到这一个向量中,增加了信息损失的风险。解码器从这一向量中提取信息也很复杂。

图片

RNN编码器-解码器架构

注意力机制:一种允许模型在处理信息时专注于关键部分,忽略不相关信息,从而提高处理效率和准确性的机制。它模仿了人类视觉处理信息时选择性关注的特点。

图片

注意力机制

当人类的视觉机制识别一个场景时,通常不会全面扫描整个场景,而是根据兴趣或需求集中关注特定的部分,如在这张图中,我们首先会注意到动物的脸部,正如注意力图所示,颜色更深的区域通常是我们最先注意到的部分,从而初步判断这可能是一只狼。

图片

注意力机制

Q、K、V:注意力机制通过查询(Q)匹配键(K)计算注意力分数(向量点乘并调整),将分数转换为权重后加权值(V)矩阵,得到最终注意力向量。

图片

Q、K、V计算注意力分数

注意力分数的价值:量化注意力机制中某一部分信息被关注的程度,反映了信息在注意力机制中的重要性。

图片

注意力分数的价值

Transformer的本质:Transformer是一种基于自注意力机制的深度学习模型,为了解决自然语言处理中的序列到序列(sequence-to-sequence)问题而设计的。

相较于RNN模型,Transformer模型具有2个显著的优势。

  • 优势一:处理长序列数据。Transformer采用自注意力机制,能够同时处理序列中的所有位置,捕捉长距离依赖关系,从而更准确地理解文本含义。而RNN模型则受限于其循环结构,难以处理长序列数据。

  • 优势二:实现并行化计算。由于RNN模型需要依次处理序列中的每个元素,其计算速度受到较大限制。而Transformer模型则可以同时处理整个序列,大大提高了计算效率。

图片

Transformer vs RNN

二、Transformer 的原理

编码器-解码器架构:Encoder-Decoder架构是自然语言处理(NLP)和其他序列到序列(Seq2Seq)转换任务中的一种常见框架。

这种架构的核心思想是将输入序列编码成一个固定大小的向量表示,然后利用这个向量来生成输出序列。

图片

RNN编码器-解码器架构

机器翻译:机器翻译就是典型Seq2Seq模型,架构包括编码器和解码器两部分。能实现从一个序列到另外一个序列的映射,而且两个序列的长度可以不相等。

图片

机器翻译

Transformer的架构:Transformer也遵循编码器-解码器总体架构,使用堆叠的自注意力机制和逐位置的全连接层,分别用于编码器和解码器,如图中的左半部分和右半部分所示。

图片

Transformer的架构

  • Encoder编码器:Transformer的编码器由6个相同的层组成,每个层包括两个子层:一个多头自注意力层和一个逐位置的前馈神经网络。在每个子层之后,都会使用残差连接和层归一化操作,这些操作统称为Add&Norm。这样的结构帮助编码器捕获输入序列中所有位置的依赖关系。

图片

Encoder(编码器)架构

  • Decoder解码器:Transformer的解码器由6个相同的层组成,每层包含三个子层:掩蔽自注意力层、Encoder-Decoder注意力层和逐位置的前馈神经网络。每个子层后都有残差连接和层归一化操作,简称Add&Norm。这样的结构确保解码器在生成序列时,能够考虑到之前的输出,并避免未来信息的影响。

图片

Decoder(解码器)架构

编码器与解码器的本质区别:在于Self-Attention的Mask机制。

图片

编码器与解码器的本质区别

Transformer的核心组件:Transformer模型包含输入嵌入、位置编码、多头注意力、残差连接和层归一化、带掩码的多头注意力以及前馈网络等组件。

图片

Transformer的核心组件

  • 输入嵌入:将输入的文本转换为向量,便于模型处理。

  • 位置编码:给输入向量添加位置信息,因为Transformer并行处理数据而不依赖顺序。

  • 多头注意力:让模型同时关注输入序列的不同部分,捕获复杂的依赖关系。

  • 残差连接与层归一化:通过添加跨层连接和标准化输出,帮助模型更好地训练,防止梯度问题。

  • 带掩码的多头注意力:在生成文本时,确保模型只依赖已知的信息,而不是未来的内容。

  • 前馈网络:对输入进行非线性变换,提取更高级别的特征。

图片

Transformer的核心组件

Transformer的3种注意力层:在Transformer架构中,有3种不同的注意力层(Self Attention自注意力、Cross Attention 交叉注意力、Causal Attention因果注意力)

  • 编码器中的自注意力层(Self Attention layer):编码器输入序列通过Multi-Head Self Attention(多头自注意力)计算注意力权重。

  • 解码器中的交叉注意力层(Cross Attention layer):编码器-解码器两个序列通过Multi-Head Cross Attention(多头交叉注意力)进行注意力转移。

  • 解码器中的因果自注意力层(Causal Attention layer):解码器的单个序列通过Multi-Head Causal Self Attention(多头因果自注意力)进行注意力计算

图片

Transformer的3种注意力层

先了解一些概念:Scaled Dot-Product Attention、Self Attention、Multi-Head Attention、Cross Attention、Causal Attention

图片

Scaled Dot-Product Attention和Multi-Head Attention

Scaled Dot-Product Attention(缩放点积注意力):输入包括维度为dk的查询(queries)和键(keys),以及维度为dv的值(values)。我们计算查询与所有键的点积,每个点积结果都除以√dk,然后应用softmax函数,以得到注意力分数。

体现如何计算注意力分数,关注Q、K、V计算公式。

图片

Scaled Dot-Product Attention(缩放点积注意力)

Self Attention(自注意力):对同一个序列,通过缩放点积注意力计算注意力分数,最终对值向量进行加权求和,从而得到输入序列中每个位置的加权表示。

表达的是一种注意力机制,如何使用缩放点积注意力对同一个序列计算注意力分数,从而得到同一序列中每个位置的注意力权重。

图片

Self Attention(自注意力)

Multi-Head Attention(多头注意力):多个注意力头并行运行,每个头都会独立地计算注意力权重和输出,然后将所有头的输出拼接起来得到最终的输出。

强调的是一种实操方法,实际操作中我们并不会使用单个维度来执行单一的注意力函数,而是通过h=8个头分别计算,然后加权平均。这样为了避免单个计算的误差。

图片

Multi-Head Attention(多头注意力)

Cross Attention(交叉注意力):输入来自两个不同的序列,一个序列用作查询(Q),另一个序列提供键(K)和值(V),实现跨序列的交互。

图片

Cross Attention(交叉注意力)

Causal Attention(因果注意力):为了确保模型在生成序列时,只依赖于之前的输入信息,而不会受到未来信息的影响。Causal Attention通过掩盖(mask)未来的位置来实现这一点,使得模型在预测某个位置的输出时,只能看到该位置及其之前的输入。

图片

Causal Attention(因果注意力)

疑问一:图中编码器明明写的是Multi-Head Attention,怎么就说是Self Attention?

图片

编码器的Self Attention

疑问一解答:Scaled Dot-Product Attention、Self Attention、Multi-Head Attention实际上说的是同一件事,从不同维度解答如何获取同一个序列中每个位置的注意力权重。图上标注Multi-Head Attention强调需要多个头计算注意力权重。

疑问二:图中编码器明明写的也是Multi-Head Attention,怎么就说是Cross Attention?

图片

编码器-解码器的Cross Attention

疑问二解答:Cross Attention、Multi-Head Attention实际上说的是也同一件事,从不同维度解答两个不同序列之间如何进行注意力转移。图上标注Multi-Head Attention强调需要多个头进行注意力转移计算。

疑问三:图中编码器明明写的也是Masked Multi-Head Attention,怎么就说是Causal Attention?

图片

解码器的Causal Attention

疑问三解答:Causal Attention、Mask Multi-Head Attention实际上说的是也同一件事,解码器中Self Attention如何结合Causal Attention来保持自回归属性。

Mask Multi-Head Attention强调使用了多个独立的注意力头,每个头都可以学习不同的注意力权重,从而增强模型的表示能力。而Causal Attention则强调了模型在预测时只能依赖于已经生成的信息,不能看到未来的信息。

三、 Transformer的应用

Transformer应用NLP:由于Transformer强大的性能,Transformer模型及其变体已经被广泛应用于各种自然语言处理任务,如机器翻译、文本摘要、问答系统等。

  • Transformer:Vaswani等人首次提出了基于注意力机制的Transformer,用于机器翻译和英语句法结构解析任务。

  • BERT:Devlin等人介绍了一种新的语言表示模型BERT,该模型通过考虑每个单词的上下文。因为它是双向的,在无标签文本上预训练了一个Transformer。当BERT发布时,它在11个NLP任务上取得了最先进的性能。

  • GPT:Brown等人在一个包含45TB压缩纯文本数据的数据集上,使用1750亿个参数预训练了一个基于Transformer的庞大模型,称为GPT-3。它在不同类型的下游自然语言任务上取得了强大的性能,而无需进行任何微调。

图片

Transformer模型及其变体

Transformer应用CV:Vision Transformer(ViT)是一种革命性的深度学习模型,它彻底改变了传统计算机视觉领域处理图像的方式。

  • ViT采用了Transformer模型中的自注意力机制来建模图像的特征,这与CNN通过卷积层和池化层来提取图像的局部特征的方式有所不同。

  • ViT模型主体的Block结构基于Transformer的Encoder结构,包含Multi-head Attention结构。

图片

Vision Transformer

ViT的本质:将图像视为一系列的“视觉单词”或“令牌”(tokens),而不是连续的像素数组。

图片

ViT的本质

ViT的工作流程:将图像分割为固定大小的图像块(patches),将其转换为Patch Embeddings,添加位置编码信息,通过包含多头自注意力和前馈神经网络的Transformer编码器处理这些嵌入,最后利用分类标记进行图像分类等任务。

图片

ViT的工作流程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/15989.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ISCC2024个人挑战赛WP-DLLCode

&#xff08;非官方解&#xff0c;以下内容均互联网收集的信息和个人思路&#xff0c;仅供学习参考&#xff09; 注意到程序调用了Encode函数对明文进行加密&#xff0c;点进去发现是对外部DLL的调用 静态分析DLL中的Encode函数可以得到 写出对应的解密脚本如下 #include <…

Ollama| 搭建本地大模型,最简单的方法!效果直逼GPT

很多人想在本地电脑上搭建一个大模型聊天机器人。总是觉得离自己有点远&#xff0c;尤其是对ai没有了解的童鞋。那么今天我要和你推荐ollama&#xff0c;无论你是否懂开发&#xff0c;哪怕是零基础&#xff0c;只需十分钟&#xff0c;Ollama工具就可以帮助我们在本地电脑上搭建…

2024/5/26周报

文章目录 摘要Abstract文献阅读题目创新点方法网络架构LSTM 实验过程Data acquisitionData preprocessingAlgorithm parameter settingsModels evaluation Performances of different models in indoor air temperature prediction 深度学习ARIMA一、ARIMA模型的基本思想二、AR…

遇见问题-VMware虚拟机打开运行一段时间后卡死

1.问题原因 因为Windows自带的虚拟化软件Hyper-V与VMware存在冲突。 2.关闭Hyper-V 1.打开【控制面板】-【程序和功能】-【启用或关闭Windows功能】3.关闭HV主机服务 1.右击计算机-》管理-》服务和应用名称-》服务-》找到HV主机服务-》右击属性停止服务 -》启动类型设置为禁…

英语四级翻译练习笔记①——大学英语四级考试2023年12月真题(第一套)——用ChatGPT修改训练四级翻译

目录 引言&#xff08;必看&#xff09; 翻译原文 我的翻译 得分&#xff08;1-3分&#xff09; 原文&#xff1a; 你的翻译&#xff1a; 修改后的翻译&#xff1a; 详细错误讲解&#xff1a; 引言&#xff08;必看&#xff09; 这是一篇英语四级翻译的练习的专栏&…

想转行程序员的朋友,有什么想问的在评论区随便问,我知道的都告诉你。

你想转行程序员吗&#xff1f; 我自己是法学院毕业后&#xff0c;通过2年的努力才转行程序员成功的。 我发现对于一个外行来说&#xff0c;找不到一个适合自己的方向&#xff0c;光靠努力在一个新的行业里成功异常艰难。即使你非常努力&#xff0c;但方向错了也会做大量的无用…

Java控制台实现斗地主的洗牌和发牌功能

一、题目要求 有3个玩家&#xff1a;A&#xff0c;B&#xff0c;C。底牌有三张牌&#xff0c;每个人共17张牌&#xff0c;共&#xff08;17*3354&#xff09;张牌&#xff0c;实现洗牌与发牌&#xff0c;只在控制没有实现UI可视化。 二、思路 1、用List集合存储所有的扑克牌。…

day12

第一题 本题我们可以使用以下方法&#xff1a; 方法一&#xff1a; 使用hash表<元素&#xff0c;出现次数>来统计字符串中不同元素分别出现的次数&#xff0c;当某一个元素的次数大于1时&#xff0c;返回false&#xff0c;如果每个元素的出现次数都为1&#xff0c;则返回…

【线程的互斥】

线程的互斥 临界区资源多个线程的运行多个线程对同一资源的竞争原子性保持线程之间地互斥互斥量(锁的原理)为什么是原子的 正确使用锁 临界区资源 进程创建线程&#xff0c;是共享内存的&#xff0c;可以对共享的资源有很方便的操作&#xff0c;当一些共享资源可以被多个线程进…

【vue-2】v-on、v-show、v-if及按键修饰符

目录 1、v-on事件 2、按键修饰符 3、显示和隐藏v-show 4、条件渲染v-if 1、v-on事件 创建button按钮有以下两种方式&#xff1a; <button v-on:click"edit">修改</button> <button click"edit">修改</button> 完整示例代码…

蜂窝物联四情监测:助力农业升级,科技赋能打造丰收新篇章!

农业四情指的是田间的虫情、作物的苗情、气候的灾情和土壤墒情。“四情”监测预警系统的组成包括管式土壤墒情监测站、虫情测报灯、气象站、农情监测摄像机&#xff0c;可实时监测基地状况,可以提高监测的效率和准确性&#xff0c;为农业生产提供及时、科学的数据支持&#xff…

【日常积累】jira安装与配置

jira简介 Jira 是一个由 Atlassian 开发的功能强大的项目管理和问题跟踪工具&#xff0c;广泛应用于软件开发、项目管理、缺陷跟踪和服务管理等领域。Jira 的多功能性和高度的可定制性使其成为一个强大的工具&#xff0c;适用于各种规模的团队和项目。无论是软件开发、项目管理…

浅谈JMeter体系结构

JMeter体系结构详解 JMeter是一款功能强大的开源性能测试工具&#xff0c;广泛应用于Web应用、数据库、FTP服务器等多种场景下的负载和压力测试。其灵活的体系结构设计使得测试计划的创建、执行与结果分析变得高效而直观。本文将深入解析JMeter的三维空间体系结构&#xff0c;…

C语言——小知识和小细节19

一、奇数位与偶数位互换 1、题目介绍 实现一个宏&#xff0c;将一个整数的二进制补码的奇数位与偶数位互换。输出格式依旧是十进制整数。示例&#xff1a; 2、分析 既然想要交换奇数位和偶数位上的数字&#xff0c;那么我们就要先得到奇数位和偶数位上的数字&#xff0c;那么…

又有人叫嚣:AI取代前端,来给你几张图,看能不能憋死AI。

总有自媒体人&#xff0c;为了些许流量&#xff0c;在大放厥词&#xff0c;说截个图给AI&#xff0c;AI就能输出前端代码&#xff0c;这是啥都敢说&#xff0c;吹牛不上税。 我来给你几张贝格前端工场日常接的大数据项目相关的图&#xff0c;你让AI生成代码&#xff0c;取代前…

Youngter-drive

BUUCTF逆向题Youngter-drive-CSDN博客 逆向每日一题----Youngter-drive题解-CSDN博客 借鉴博客,写得比我好 upx拖壳 upx -d Youngter-drive.exe 这道题我不知道为什么,我这里是运行不了的,也没有找到原因 int __cdecl main_0(int argc, const char **argv, const char **env…

Nginx 的原理解析 worker 配置及相关问题 -细节狂魔

文章目录 前言Nginx 的最基本的执行过程&#xff08;master & worker&#xff09;worker 是如何进行工作的 一个 master 和 多个 woker 有哪些好处1、可以使用 nginx 热部署2、节省资源 && worker 进程之间互不影响 && nginx 服务不会中断 woker 设置多少才…

【知识图谱】探索攻略:基础、构建、高级应用与相关论文方向

【知识图谱】相关文章汇总 写在最前面一、什么是知识图谱&#xff1f;二、相关历史文章代码实现&#xff1a;简单的知识图谱可视化知识图谱前身&#xff1a;信息抽取知识图谱应用1&#xff1a;社交网络分析知识图谱应用2&#xff1a;威胁情报挖掘知识图谱应用3&#xff1a;Code…

Python小游戏——俄罗斯方块

文章目录 项目介绍环境配置代码设计思路1.初始化和导入库&#xff1a;2.定义颜色和屏幕尺寸&#xff1a;3.定义游戏逻辑&#xff1a;4.游戏循环&#xff1a; 源代码效果图 项目介绍 俄罗斯方块游戏是一款经典的益智游戏&#xff0c;玩家通过旋转和移动各种形状的方块&#xff…

【NumPy】关于numpy.clip()函数,看这一篇文章就够了

&#x1f9d1; 博主简介&#xff1a;阿里巴巴嵌入式技术专家&#xff0c;深耕嵌入式人工智能领域&#xff0c;具备多年的嵌入式硬件产品研发管理经验。 &#x1f4d2; 博客介绍&#xff1a;分享嵌入式开发领域的相关知识、经验、思考和感悟&#xff0c;欢迎关注。提供嵌入式方向…