MySQL中JOIN连接的实现算法

目录

嵌套循环算法(NLJ)

简单嵌套循环(SNLJ)

索引嵌套循环(INLJ)

块嵌套循环(BNLJ)

三种算法比较

哈希连接算法(Hash Join)

注意事项:

工作原理:

优点:

缺点:

排序合并链接(SORT MERGE JOIN)

工作流程:

优点:

缺点:

总结


我们都知道SQL的join关联表的使用方式,但是这次聊的是实现join的算法,join有三种算法,分别是Nested Loop Join,Hash join,Sort Merge Join。

嵌套循环算法(NLJ)

嵌套循环算法(Nested-Loop Join,NLJ)是通过两层循环,用第一张表做Outter Loop,第二张表做Inner Loop,Outter Loop的每一条记录跟Inner Loop的记录作比较,符合条件的就输出。而NLJ又有3种细分的算法:嵌套循环算法又可以分为简单嵌套循环、索引嵌套循环、块嵌套循环。

简单嵌套循环(SNLJ)

    // 伪代码for (r in R) {for (s in S) {if (r satisfy condition s) {output <r, s>;}}}

SNLJ就是两层循环全量扫描连接的两张表,得到符合条件的两条记录则输出,这也就是让两张表做笛卡尔积,比较次数是R * S,是比较暴力的算法,会比较耗时。

索引嵌套循环(INLJ)

    // 伪代码for (r in R) {for (si in SIndex) {if (r satisfy condition si) {output <r, s>;}}}

INLJ是在SNLJ的基础上做了优化,通过连接条件确定可用的索引,在Inner Loop中扫描索引而不去扫描数据本身,从而提高Inner Loop的效率。
而INLJ也有缺点,就是如果扫描的索引是非聚簇索引,并且需要访问非索引的数据,会产生一个回表读取数据的操作,这就多了一次随机的I/O操作。

块嵌套循环(BNLJ)

    // 伪代码for (r in R) {for (sbu in SBuffer) {if (r satisfy condition sbu) {output <r, s>;}}}

扫描一个表的过程其实是先把这个表从磁盘上加载到内存中,然后在内存中比较匹配条件是否满足。但内存里可能并不能完全存放的下表中所有的记录。为了减少访问被驱动表的次数,我们可以首先将驱动表的数据批量加载到 Join Buffer(连接缓冲),然后当加载被驱动表的记录到内存时,就可以一次性和多条驱动表中的记录做匹配,这样可大大减少被驱动表的扫描次数,这就是 BNLJ 算法的思想。

三种算法比较

算法比较(外表大小R,内表大小S):

                   \algorithm
comparison\
Simple Nested Loop JoinBlock Nested Loop Join
外表扫描次数111
内表扫描次数R0
读取记录次数
R + R * S
R + RS_Matches
比较次数
R * S
R * IndexHeight
R * S
回表次数0
RS_Matches
0

整体效率比较:INLJ > BNLJ > SNLJ

哈希连接算法(Hash Join)

MySQL 8.0.18支持在optimizer_switch中设置hash_join标志,以及优化器提示HASH_JOIN和NO_HASH_JOIN。在MySQL 8.0.19和更高版本中,这些都不再有任何效果。

从MySQL 8.0.20开始,对块嵌套循环的支持被删除,并且服务器在以前使用块嵌套循环的地方使用哈希连接。

hash join的实现分为build table也就是被用来建立hash map的小表和probe table,首先依次读取小表的数据,对于每一行数据根据连接条件生成一个hash map中的一个元組,数据缓存在内存中,如果内存放不下需要dump到外存。依次扫描探测表拿到每一行数据根据join condition生成hash key映射hash map中对应的元組,元組对应的行和探测表的这一行有着同样的hash key, 这时并不能确定这两行就是满足条件的数据,需要再次过一遍join condition和filter,满足条件的数据集返回需要的投影列。

// 伪代码
// 算法复杂度:O(M + N)
// 假设用户表有M条记录, 订单表有N条记录
func HashJoin(users []TradeUser, orders []TradeOrder) []*UserOrderView {var userOrderViews []*UserOrderView = make([]*UserOrderView, 0)// 将用户表以用户ID为Key,用户为Value转换为Hash表// 算法复杂度:O(M)userTable := make(map[int]TradeUser)for _, user := range users {userTable[user.Id] = user}// 遍历订单表,查找用户// 算法复杂度:O(N)for _, order := range orders {// 复杂度,接近:O(1)if user, exists := userTable[order.UserId]; exists {// 添加视图结果userOrderViews = append(userOrderViews, &UserOrderView{UserId:      user.Id,UserName:    user.Name,OrderId:     order.Id,OrderAmount: order.Amount,})}}return userOrderViews
}

注意事项:

  1. hash join本身的实现不要去判断哪个是小表,优化器生成执行计划时就已经确定了表的连接顺序,以左表为小表建立hash table,那对应的代价模型就会以左表作为小表来得出代价,这样根据代价生成的路径就是符合实现要求的。
  2. hash table的大小、需要分配多少个桶这个是需要在一开始就做好的,那分配多少是一个问题,分配太大会造成内存浪费,分配太小会导致桶数过小开链过长性能变差,一旦超过这里的内存限制,会考虑dump到外存,不同数据库有它们自身的实现方式。
  3. 如何对数据hash,不同数据库有着自己的方式,不同的哈希方法也会对性能造成一定的影响。

工作原理:

构建阶段(Build Phase)

  1. 选择构建表(Build Table):算法通常会选择数据量较小的表作为构建表,以减少哈希表的构建时间和所需内存。但这不是绝对的,实际选择会根据统计信息和成本估算来决定。
  2. 创建哈希表:对构建表中的每一行记录,取其连接列(即用于JOIN的列)的值,应用哈希函数计算出一个哈希码(hash code)。然后,根据这个哈希码将记录存储在一个哈希桶(hash bucket)中。如果有多个记录的连接列值经过哈希后得到相同的哈希码,这些记录会被组织成链表或其他数据结构存储在同一哈希桶内。

探测阶段(Probe Phase)

  1. 扫描探测表(Probe Table):对另一个较大的表(探测表)进行扫描。
  2. 哈希计算与匹配:对于探测表中的每一行,同样对其连接列值应用相同的哈希函数计算哈希码,然后在这个预先构建好的哈希表中查找对应的哈希桶。
  3. 匹配与输出:如果找到匹配的哈希桶,就进一步检查桶内的链表或数据结构,进行精确的等值比较,以确保连接列的值确实相等。一旦找到匹配项,就结合两个表的相关字段生成结果集的行并输出。

优点:

  • 性能优势:在数据量大时,哈希连接可以显著减少磁盘I/O和CPU时间,因为它避免了嵌套循环的多次扫描和排序-合并连接中的排序开销。
  • 并行处理友好:哈希连接天然适合并行化处理,因为哈希表可以在不同的处理器或节点上并行构建和查询。
  • 内存依赖:哈希连接的效率高度依赖于可用内存,因为需要在内存中存储整个哈希表。如果内存不足,部分或全部哈希表可能需要溢写到磁盘,这会大大降低效率。

缺点:

  • 内存消耗:如前所述,构建哈希表需要足够的内存空间,特别是当构建表较大时。
  • 非等值连接不适用:哈希连接主要用于等值连接,对于非等值连接(如大于、小于等条件)不适用。
  • 预读取与优化:为了效率,数据库系统需要有效管理内存使用,并可能实施预读取策略来优化性能。

排序合并链接(SORT MERGE JOIN)

排序合并连接是嵌套循环连接的变种。如果两个数据集还没有排序,那么数据库会先对它们进行排序,这就是所谓的sort join操作。对于数据集里的每一行,数据库会从上一次匹配到数据的位置开始探查第二个数据集,这一步就是Merge join操作。

// 伪代码
// 算法复杂度:O(M log M + N log N)
// 假设用户表有M条记录, 订单表有N条记录
func SortJoin(users []TradeUser, orders []TradeOrder) []*UserOrderView {var userOrderViews []*UserOrderView = make([]*UserOrderView, 0)// 排序user表// 算法复杂度:O(M log M)sort.Slice(users, func(i, j int) bool {return users[i].Id < users[j].Id})// 排序order表// 算法复杂度:O(N log N)sort.Slice(orders, func(i, j int) bool {return orders[i].Id < orders[j].Id})// 遍历订单表,查找用户// 算法复杂度:O(M)userIdx := 0for _, order := range orders {// 在user.id为主键的情况下,这里还可以执行二分查找for idx < len(users) && users[userIdx].Id < order.UserId {userIdx++}// 如果找到用户,添加到结果集合if userIdx < len(users) && users[userIdx].id == order.UserId {// Join条件满足添加视图结果userOrderViews = append(userOrderViews, &UserOrderView{UserId:      user.Id,UserName:    user.Name,OrderId:     order.Id,OrderAmount: order.Amount,})}}return userOrderViews
}

工作流程:

  1. 排序阶段

    • 数据排序:首先,算法会对参与连接的两个表根据连接键进行排序。这一步骤是关键,因为只有排序后的数据才能有效地进行归并操作。如果表已经按照连接键排序,这一步可以省略。
    • 索引利用:如果表上有适合的索引(如聚集索引或覆盖索引),数据库引擎可能会直接利用这些索引来避免全表排序。
  2. 合并阶段

    • 双指针扫描:一旦两个表的数据都按连接键排序好了,算法会使用两个指针(或游标)分别指向两个表的开始。每个指针逐步向后移动,比较两个指针所指记录的连接键值。
    • 匹配与输出:当两个指针指向的记录的连接键相等时,说明这两个记录应该被连接起来,此时就会输出(或累积到结果集中)这对匹配的记录。如果一个表的指针达到末尾,而另一个表还有剩余记录,则剩余的记录被视为不匹配,如果有外连接的情况,则可能作为NULL扩展输出。
    • 推进指针:匹配后,指针会根据排序顺序向后移动,继续寻找下一个匹配的记录。

优点:

  • 效率:对于大表连接,特别是当连接键分布均匀,且数据已经排序或可以低成本排序时,SMJ比Nested-Loop Join更高效,因为它减少了不必要的比较次数。
  • 稳定性:由于是基于排序的,Sort Merge Join保证了输出结果的稳定性,即具有相同键值的记录保持原有的相对顺序。
  • 可预测性能:时间复杂度主要取决于排序操作,通常是O(n log n),对于大规模数据集来说,性能较为可预测。

缺点:

  • 内存和I/O开销:排序操作可能需要额外的内存空间,并且如果数据不能完全放入内存,还需要磁盘I/O操作,这可能会成为性能瓶颈。
  • 预处理时间:排序是预处理步骤,可能增加整体处理时间,尤其是在数据已经接近有序或只需要执行一次连接操作的情况下。

总结

算法名称时间复杂度描述
Nested Loop JoinO(M*N)适合小数据集,大数据集很慢
Sort Merge JoinO(M log M + N log N + M + N)适合于当内存不足以存放整个数据集,需要小的分区上进行排序和合并
Hash JoinO(M+N)适用于大数据集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/10930.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

异常处理/CC++ 中 assert 断言 应用实践和注意事项

文章目录 概述assert 本质浅析Release版本下的assert是否生效默认设置下 QtCreator环境 assert 过程默认配置下 VS环境 assert 过程配置VS发布模式下的断言生效VS环境Release版本的UI程序Release下请当我不生效 请勿滥用assert导致逻辑错误再强调不要在assert内执行逻辑功能怎敢…

【UnityRPG游戏制作】Unity_RPG项目_PureMVC框架应用

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;就业…

Vue-watch监听器

监听器 watch侦听器&#xff08;监视器&#xff09;简单写法完整写法 watch侦听器&#xff08;监视器&#xff09; 作用&#xff1a;监视数据变化&#xff0c;执行一些业务逻辑或异步操作 语法&#xff1a; watch同样声明在跟data同级的配置项中简单写法&#xff1a; 简单类型…

C++ 中的 lambda 表达式

1.概念 lambda表达式实际上是一个匿名类的成员函数&#xff0c;该类由编译器为lambda创建&#xff0c;该函数被隐式地定义为内联。因此&#xff0c;调用lambda表达式相当于直接调用匿名类的operator()函数&#xff0c;这个函数可以被编译器内联优化&#xff08;建议&#xff0…

地图涟漪效果

参考API echarts图表集 useEcharts.js import { onBeforeUnmount, onDeactivated } from "vue"; // import * as echarts from "echarts";/*** description 使用 Echarts (只是为了添加图表响应式)* param {Element} myChart Echarts实例 (必传)* param …

AcWing-168生日蛋糕-搜索/剪枝

题目 思路 表面积和体积公式&#xff1a;以下分析参考自&#xff1a;AcWing 168. 生日蛋糕【图解推导】 - AcWing&#xff1b;AcWing 168. 关于四个剪枝的最清楚解释和再次优化 - AcWing 代码 #include<iostream> #include<cmath> using namespace std;const in…

【爬虫基础1.1课】——requests模块上

目录索引 requests模块的作用&#xff1a;实例引入&#xff1a; 特殊情况&#xff1a;锦囊1&#xff1a;锦囊2: 这一个栏目&#xff0c;我会给出我从零开始学习爬虫的全过程。感兴趣的小伙伴可以关注一波&#xff0c;用于复习和新学都是不错的选择。 那么废话不多说&#xff0c…

C语言学习(九)多文件编程 存储类型 结构体

目录 一、多文件编程&#xff08;一&#xff09;不写头文件的方方式进行多文件编程 &#xff08;二&#xff09;通过头文件方式进行多文件编程&#xff08;1&#xff09;方法&#xff08;2&#xff09;头文件守卫 &#xff08;三&#xff09; 使用多文件编程实现 - * / 功能 二…

HC-06 蓝牙串口从机 AT 命令详解

HC-06 蓝牙串口从机 AT 命令详解 要使用 AT 命令&#xff0c;首先要知道 HC-06 的波特率&#xff0c;然后要进入 AT 命令模式。 使用串口一定要知道三要素&#xff0c;一是波特率&#xff0c;二是串口号&#xff0c;三是数据格式, HC-06只支持一种数据格式: 数据位8 位&#…

HTTP 连接详解

概述 世界上几乎所有的 HTTP 通信都是由 TCP/IP 承载的&#xff0c;客户端可以打开一条TCP/IP连接&#xff0c;连接到任何地方的服务器。一旦连接建立&#xff0c;客户端和服务器之间交换的报文就永远不会丢失、受损或失序 TCP&#xff08;Transmission Control Protocol&…

97. 交错字符串-----回溯、动态规划

题目链接 97. 交错字符串 - 力扣&#xff08;LeetCode&#xff09; 解答 递归回溯 题目所述为两个字符串交替组成第三个字符串&#xff0c;之前好像做过相似的题目&#xff0c;直接联想到可以考虑使用递归回溯的做法&#xff0c;让字符串s1和字符串s2分别作为起始字符串&…

Mybatis-Plus大批量插入数据到MySQL

MyBatis-Plus的saveBatch方法 GetMapping("/save1") public void save1() {// 数据准备List<MallOrder> orderList getMallOrderList();// mybatis-pluslong start System.currentTimeMillis();mallOrderService.saveBatch(orderList);System.out.println(&…

计算机服务器中了360后缀勒索病毒怎么解密,360后缀勒索病毒恢复

计算机网络技术的不断发展与应用&#xff0c;为企业的生产运营提供了极大便利&#xff0c;大大提高了企业的办公效率&#xff0c;为企业的生产运营注入了新的动力&#xff0c;但网络是一把双刃剑&#xff0c;在为企业提供便利的同时&#xff0c;也为企业的数据安全带来严重威胁…

google test 使用指南

目录 测试项目 calculator.h calculator.cpp test01.cpp 创建新项目 选择Google Test 选择要测试的项目 pch.cpp 加入依赖 设为启动项目 ​编辑 运行 ​编辑 关键点 测试项目 calculator.h #ifndef __CALCULATOR_H__ #define __CALCULATOR_H__#include <i…

Linux操作系统中管理磁盘的另外一种操作方式。即LVM——逻辑卷管理操作

在Linux操作系统中管理磁盘的一种方法名称——LVM&#xff0c;这种管理磁盘的优势。 1.使用LVM去管理磁盘可以在不影响原来数据的前提下去扩容磁盘空间或者是缩减磁盘空间。 在LVM中除了上层逻辑券可以扩容&#xff0c;下层的券组也可以扩容。 2.使用LVM管理的磁盘支持快照功…

MySQL中的子查询

子查询,在一个查询语句中又出现了查询语句 子查询可以出现在from和where后面 from 表子查询(结果一般为多行多列)把查询结果继续当一张表对待 where 标量子查询(结果集只有一行一列)查询身高最高的学生,查询到一个最高身高 列子查询(结果集只有一行多列) 对上表进行如下操作 …

韩顺平0基础学Java——第10天

p202-233 类与对象&#xff08;第七章&#xff09; 成员方法 person类中的speak方法&#xff1a; 1.public表示方法是公开的 2.void表示方法没有返回值 3.speak&#xff08;&#xff09;中&#xff0c;speak表示方法名&#xff0c;括号是形参列表。 4.大括号为方法体&am…

WPF之多种视图切换

1&#xff0c;View切换&#xff0c;效果呈现 视图1 视图2 视图3 2&#xff0c;在Xaml中添加Listview控件&#xff0c;Combobox控件。 <Grid ><Grid.RowDefinitions><RowDefinition Height"143*"/><RowDefinition Height"30"/>&l…

Leetcode经典题目之用队列实现栈

P. S.&#xff1a;以下代码均在VS2019环境下测试&#xff0c;不代表所有编译器均可通过。 P. S.&#xff1a;测试代码均未展示头文件stdio.h的声明&#xff0c;使用时请自行添加。 目录 1、题目展示2、题目分析3、完整代码演示4、结语 1、题目展示 前面我们了解过如何实现队列…

第五百回 Get路由管理

文章目录 1. 概念介绍2. 使用方法2.1 普通路由2.2 命名路由 3. 示例代码4. 内容总结 我们在上一章回中介绍了"使用get显示Dialog"相关的内容&#xff0c;本章回中将介绍使用get进行路由管理.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在本章…