【大数据·Hadoop】从词频统计由浅入深介绍MapReduce分布式计算的设计思想和原理

一、引入:词频统计问题

假如我们有一亿份文档,需要统计这一亿份文档的词频。我们会怎么做,有以下思路

  • 使用单台PC执行:能不能存的下不说,串行计算,一份一份文档读,然后进行词频统计,需要运行很长时间
  • 多台PC:把文档分布到多台PC上处理,每个PC处理一部分文件,最后合并。——听起来很简单,但是实际实现的话还是有很多问题的。

对于第二种方法,有以下几种方法,我们来分别分析一下:

在这里插入图片描述

可以看到,我们把数据分布到多台主机上,然后让每台主机并行扫描文档,将读取到的单词发送给一台中央主机,由中央主机统一进行词频统计。

这样有哪些问题:

  • 小粒度通信->网络通信瓶颈:所有子PC分别将一个个单词(超级无敌多)通过网络同时发送 给一台中央主机, 必定造成网络IO通信堵塞
  • 中央主机的负载过重: 虽然数据分布到了多台子PC上进行扫描读取处理,的确和之前的单台PC相比(一个一个文档依次往后读)能节约时间,但是处理时间其实还是差不多的。
  • 缺乏容错机制: 在这种单中央主机的设计思想下,一旦子PC中有一台出错,必定导致整个结果错误。
  • 数据一致性和同步问题: 你想一想,像上图,多个子PC同时对比如dog这个单词进行写入,这是一个并发操作,必须要加锁保证数据一致性。
  • 扩展性问题: 随着数据量的增加,中央主机处理的数据量和计算负载也会线性增长,最终可能超过中央主机的处理能力。扩展系统可能需要更换更强大的中央主机,这不仅成本高昂,而且存在物理限制。

OK,我们先别一下子跳到MapReduce,看看基于上面这个方法我们还能怎么改进:

在这里插入图片描述
其实说实话这个基本上没啥改善,就是改了一下单台PC自己在发送词频之前先做了个预处理统计,这样能够稍微渐缓一下网络IO,但是其实还是没啥用。

那么还有什么其他可以改善的地方的吗?在这里插入图片描述
没错,上面不是说主机压力太大了吗?那么我们现在一个主机就处理一个单词,这样OK了把?其实还是有问题的,或者说带来了新的问题:

  • 网络通信问题:这样一个个单词发,或者统计好了(也就是先做计算嘛)(其实很多时候不能先做计算,比如算整体学生的最大成绩差)再发,还是通信粒度太小了
  • 负载不均衡:一些常见的单词(如“the”、“is”等)可能会导致某些主机负载过重,而其他主机负载轻松。
  • 扩展性问题: 你看,我现在统计单词,那我统计汉字呢?计算主机的数量是不是需要改变??可扩展性还是很差的

其实在实现上还有很多细节问题:

  • 数据怎么分呢?人工?手动分割数据并分配给多台机器处理,这个过程不仅繁琐而且难以管理和扩展。
  • 开发者需要手动管理数据的分发、任务的执行、结果的汇总以及故障的处理等,这不仅增加了编程的复杂性,也增加了出错的几率。
  • 处理分布式数据需要开发者对分布式系统的底层细节有深入的了解,如数据分布、通信机制、容错机制等

下面我们来看看MapReduce的思想,看看它是如何解决了这些问题,在这之中也可以看到:数据结构、算法、数学等知识的融合。

二、MapReduce介绍

2.1:设计思想

MapReduce的算法核心思想是: 分治

学过算法的同学应该会学到分治算法,所谓分治,就是把原问题分解为规模更小的问题,进行处理,最后将这些子问题的结果合并,就可以得到原问题的解。MapReduce这种分布式计算框架的核心就是:分治。

在这里插入图片描述

上图是MapReduce的处理流程图,可以看到,MapReduce的整个过程主要分为:

  1. Map:

    • 输入:来自存储在hdfs上的文件block进行分块(split)后,并且进行读取数据处理的分块数据的键值对(key-value)形式。—— 输入数据被分成一系列的数据块,被称为“input splits”。MapReduce框架尽量保持每个split的大小相同,这样每个Map任务处理的数据量就大致相等。这是负载均衡的第一步。
    • 输出:进行扫描后的(单词,词频)的键值对形式
    • 分析:Map任务通常在存储相应数据分片的节点上执行,这样可以减少网络传输。如果某些节点因为硬件性能好或者当前负载轻而完成任务更快,MapReduce可以把新的Map任务分配给这些节点,从而提高资源的利用率。MapReduce框架会自动管理数据的分片和分发,无需用户手动干预,从而提高数据分发效率
  2. Shuffle与Sort阶段

    • 处理完数据后,Map任务的输出会进入Shuffle阶段。在这个阶段,框架负责将所有Map任务输出的键值对根据键进行排序和分组(还有combine,根据项目需要可选,减少网络io)。只有排序和分组后的数据会被发送到Reduce任务,这减少了网络传输的数据量,从而缓解网络通信瓶颈,同时,由于shuffle阶段对所有的Map任务进行了排序和分组,也就是说,一组数据只分发给一个reduce,这样也不会来自多个map对同一个reduce同时写入的并发,即消除了并发风险,保证了数据一致性
  3. Reduce任务的智能分配

    • Reduce任务是根据Map阶段的输出键值对自动分配(默认是哈希,可以手写更优的分配算法)的。MapReduce尝试均匀地分配负载,确保每个Reduce任务处理相似数量的键值对。如果某个Reduce任务处理得更快,它可以接受更多的数据,从而实现动态的负载均衡

从上面这个处理流程可以看出,MapReduce还有很多其他优点:

  • 容错机制(解决容错和恢复机制问题)
    MapReduce具备强大的容错机制。如果一个Map或Reduce任务失败,框架会自动在另一个节点上重新调度这个任务。此外,中间数据会被写入磁盘,这允许在节点故障后从最后一个检查点恢复,而不是从头开始。
  • 水平扩展(解决扩展性问题)
    MapReduce支持水平扩展。当数据量增加时,可以简单地增加更多的节点到集群中。MapReduce框架会自动利用这些新节点,无需对现有的应用程序做任何修改,这使得扩展性得到了极大的提高。

2.2:设计理念:移动计算而非移动数据

其实在开篇讲到的三种分布式计算统计词频的方法中,它们的想法核心都是移动数据,把数据移动到中央主机进行计算,这样带来很明显的问题:网络IO,带宽。

而MapReduce, 它将计算任务(Map和Reduce操作)分布到存储实际数据的节点上,这样就可以在数据存储的地方直接进行计算。这种方法减少了大量数据在网络中的移动,因为只有中间结果和最终结果需要在节点之间传输,这些比原始数据小得多。

这种做法不仅提高了网络传输的效率,也增强了系统的容错性。因为MapReduce框架会将Map任务的输出写入磁盘(中间结果),在发生故障时,可以从这些已经写入磁盘的中间结果恢复,而不需要从头开始处理数据。这意味着即使在节点失败的情况下,作业的执行仍然可以继续,从而保证了计算的连续性和完整性

总结来说,MapReduce通过**“移动计算而非移动数据”**的设计理念,有效地解决了传统分布式计算方法中的网络效率和容错性问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/10275.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

视频号小店做店的最新最全攻略,小白也能快速上手轻松变现!

大家好,我是电商花花。 从开始接触视频号小店到现在已经两年多时间了,关于视频号小店也有不少经验和感触。 最近越来越多的人开始进入视频号小店的电商赛道,有人日均销售额做到几万甚至十几万。 想在视频号上变现赚钱,但是苦于…

【Android】Apk图标的提取、相同目录下相同包名提取的不同图标apk但是提取结果相同的bug解决

一般安卓提取apk图标我们有两种常用方法: 1、如果已经获取到 ApplicationInfo 对象(假设名为 appInfo),那么我们获取方法为: appInfo.loadIcon(packageManager)// 返回一个 Drawable 对象2、 如果还没获取到 Applica…

DPDK e1000 ring buffer

基本原理 如图(盗图) 内存(RAM)和网卡(NIC)之间通过Descriptor ring 交互网络报文数据内存中需要申请内存 packet buffer 的内存池,内存池中的每个实例,地址是物理连续的或者IOVA…

【Vue基础】Vue在组件数据传递详解

Vue核心基础-CSDN博客 先回顾Vue特性: Vue.js 是一个用于构建用户界面的渐进式框架,具有许多强大的特性。以下是一些主要的 Vue 特性: 响应式数据:Vue 使用双向绑定来实现数据的响应式更新。当数据发生变化时,视图会自…

JAVA毕业设计138—基于Java+Springboot+Vue的医院预约挂号小程序(源代码+数据库)

毕设所有选题: https://blog.csdn.net/2303_76227485/article/details/131104075 基于JavaSpringbootVue的医院预约挂号小程序(源代码数据库)138 一、系统介绍 本系统前后端分离带小程序和后台 小程序(用户端),后台管理系统&a…

OpenCv中cv2.subtract(image,blurred)与(image-blurred)的区别

目录 一、cv2.subtract()函数二、cv2.subtract(image,blurred)和(image-blurred)处理效果对比2.1 代码2.2 输出结果 三、总结 一、cv2.subtract()函数 cv2.subtract是OpenCV库中的一个函数,用于进行图像减法运算。它可以很方便地进行两个图像…

鸿蒙OpenHarmony:【关于deps、external_deps的使用】

关于deps、external_deps的使用 在添加一个模块的时候,需要在BUILD.gn中声明它的依赖,为了便于后续处理部件间依赖关系,我们将依赖分为两种——部件内依赖deps和部件间依赖external_deps。 依赖分类 开发前请熟悉鸿蒙开发指导文档&#xff…

conan2 基础入门(01)-介绍

conan2 基础入门(01)-介绍 文章目录 conan2 基础入门(01)-介绍⭐什么是conan官网Why use Conan? ⭐使用现状版本情况个人知名开源企业 ⭐ConanCenter包中心github ⭐说明文档END ⭐什么是conan 官网 官网:Conan 2.0: C and C Open Source Package Manager 一句话来…

Array.map解析

map方法会创建一个新数组。该方法会循环数组中的每个值,如果仅仅是想循环数组不需要返回值使用数组的forEach方法就可以。原数组中的每个元素都调用一次提供的函数后的返回值组成。Array.map 它接收一个函数 这个函数可以接收三个参数 数组的每个值item 这个值的索引…

SC-Lego-LOAM建图与ndt_localization的实车实现

参考:https://blog.csdn.net/weixin_44303829/article/details/121524380 https://github.com/AbangLZU/SC-LeGO-LOAM.git https://github.com/AbangLZU/ndt_localizer.git 将建图和定位分别使用lego-loam和ndt来进行,实车上的效果非常不错,…

STM32F103学习笔记 | 7.使用寄存器点亮LED灯

int main(void) { // 分析指南者硬件原理图得知要实现点亮灯泡需要将PB0设置为低电位, // 查阅STM32F10x中文手册的端口配置低寄存器,得知一个PB有8个配置位,查阅手册找到了PB0的位置是3:2位置, // 插入未知知识:将端…

EMAIL-PHP功能齐全的发送邮件类可以发送HTML和附件

EMAIL-PHP功能齐全的发送邮件类可以发送HTML和附件 <?php class Email { //---设置全局变量 var $mailTo ""; // 收件人 var $mailCC ""; // 抄送 var $mailBCC ""; // 秘密抄送 var $mailFrom ""; // 发件人 var $mailSubje…

获取Android开发板已连接WiFi密码

硬件/软件环境&#xff1a; 1&#xff09;全志芯片开发板A40i 2&#xff09;Android Studio Giraffe | 2022.3.1 Patch 3 连接条件&#xff1a; 1)两端都是USB-A接口线&#xff0c;一端插入电脑端USB接口&#xff0c;另一端插入开发板USB接口&#xff1b; 2&#xff09;Andr…

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;二&#xff09; #Options local_llm llama3 llm ChatOllama(modellocal_llm, format"json", temperature0) #embeddings #embeddings OllamaEmbeddings(model"nomic-embed-text") embed…

作为网络安全工程师需要掌握的安全小知识!

网络安全风险无处不在&#xff0c;今天为大家梳理了一些网络安全相关的小知识&#xff0c;希望能进一步提升大家的安全意识&#xff0c;帮助大家建立更加安全的网络环境。 一、主机电脑安全 1、操作系统安全&#xff1a;安装操作系统时需要选择合适的版本&#xff0c;及时打补…

制造业如何选择合适的项目管理软件?(内含软件推荐)

近期&#xff0c;收到很多小伙伴的提问&#xff1a;“想了解制造行业如何选择到合适的项目管理软件&#xff1f;”在竞争激烈的市场环境中&#xff0c;有效的项目管理对于制造业的发展至关重要&#xff0c;而项目管理软件则是重要支撑&#xff0c;能帮助企业更好地规划和跟踪项…

ok_Keil实用小技巧 | Keil定制Hex文件名实现的方法

Keil实用小技巧 | Keil定制Hex文件名实现的方法 echo off REM 可执行文件&#xff08;Hex&#xff09;文件名 set HEX_NAMEDemo REM 可执行文件&#xff08;Hex&#xff09;文件路径 set HEX_PATH.\Objects REM 定制Hex输出路径 set OUTPUT_PATH.\Output REM 软件版本文件…

大模型微调之 在亚马逊AWS上实战LlaMA案例(八)

大模型微调之 在亚马逊AWS上实战LlaMA案例&#xff08;八&#xff09; 微调技术 Llama 等语言模型的大小超过 10 GB 甚至 100 GB。微调如此大的模型需要具有非常高的 CUDA 内存的实例。此外&#xff0c;由于模型的大小&#xff0c;训练这些模型可能会非常慢。因此&#xff0c…

element 输入框禁止输入空格以及复制的值进去删除空格(vue自定义指令)开箱即用

实例图&#xff1a; 代码&#xff1a; //输入框禁止输入空格 Vue.directive(noSpace, {bind(el) {//禁止输入空格el.addEventListener("keydown", function (event) {if (event.keyCode 32) {event.preventDefault();}});//复制值时去掉空格el.addEventListener(&q…

node——使用localtunnel做内网穿透

前言 内网穿透是一种允许外网用户访问内网主机的技术。 将您的本地主机公开到世界各地&#xff0c;使之能访问&#xff0c;无需混淆DNS或部署。 内网穿透技术通常涉及以下几个关键步骤&#xff1a; 使用公网服务器或NAT&#xff08;网络地址转换&#xff09;设备&#xff1a;这…