bert入门

bert是什么

        BERT(Bidirectional Encoder Representations from Transformers)是一种自然语言处理(NLP)中的预训练模型,它是基于Transformer架构的一种深度学习模型。BERT的主要目标是在大规模文本语料库上进行预训练,然后可以通过微调来用于各种NLP任务,例如文本分类、命名实体识别、问答等。

         BERT的核心思想是在大规模文本语料库上进行预训练。在大量的文本数据上进行了自我学习,以学习单词、短语和句子之间的语义关系。BERT使用了两个预训练任务来训练模型:

  • 掩盖语言建模(Masked Language Modeling,MLM):在输入文本中,随机选择一些单词并将它们替换为特殊的"[MASK]"标记,然后模型的任务是预测这些标记的原始单词。
  • 下一句预测(Next Sentence Prediction,NSP):模型接受一对句子作为输入,并预测这两个句子是否是连续的。 

        BERT在通过大量数据进行预训练后,会生成一个预训练模型。预训练模型包含了在大规模文本语料库上学习到的单词、短语和句子的语义表示。这个模型可以用于各种NLP任务,同时也可以通过微调来进一步优化,以适应特定任务的需求。

bert能干什么

        BERT还是比较强大的,可以在多种NLP任务中发挥作用。

  1. 文本分类:BERT可以用于对文本进行分类,例如情感分析(判断文本是正面还是负面情感)、主题分类等。通过微调BERT模型,可以对不同的文本进行分类。

  2. 命名实体识别(NER):BERT可以识别文本中的命名实体,如人名、地名、组织名等。可以用于信息提取、文本注释等任务中。

  3. 问答系统(QA):BERT可以用于构建问答系统,它可以理解问题并在文本中找到相关的答案。在搜索引擎、智能助手和知识图谱等应用中具有重要价值。

  4. 机器翻译:BERT可以用于机器翻译任务,通过将源语言文本编码为BERT表示,然后将其解码为目标语言文本。

  5. 文本生成:BERT可以用于生成文本,包括生成摘要、自动化写作、对话生成等任务。结合生成型模型,BERT可以生成自然流畅的文本。

  6. 信息检索:BERT可以改进搜索引擎的性能,通过更好地理解用户查询来提供相关的搜索结果。

  7. 语言理解:BERT的预训练表示可以用于许多其他语言理解任务,如自动摘要、文本聚类、句法分析等。

  8. 语义相似度计算:BERT可以用于计算两个文本之间的语义相似度,这在信息检索和推荐系统中很有用。

  9. 情感分析:BERT可以分析文本中的情感,用于了解用户对产品、服务或事件的情感倾向。

  10. 对话系统:BERT可以用于构建智能对话系统,能够理解和生成自然语言对话。

bert如何用

        使用BERT模型通常分为两个主要步骤:预训练和微调。

        首先,对BERT进行预训练,生成一个预训练模型。预训练模型包含了在大规模文本语料库上学习到的单词、短语和句子的语义表示。

        BERT应用分为预训练、微调、推理三个步骤。

        预训练:首先要准备数据,需要大规模的文本数据。这些数据需要进行预处理,包括分词、标记化、去除停用词等,以便将其转化为模型可接受的格式。

        然后,需要获取经过预训练的BERT模型,通常可以在互联网上或深度学习框架的模型库中找到预训练的BERT模型权重。使用预处理后的文本数据,对BERT模型进行预训练。这一步通常需要大量计算资源和时间,因此常常在大型计算集群或云平台上进行。

        训练完成后,将生成预训练的BERT模型,供后续微调和应用。

        微调:准备与该任务相关的标记化数据。例如,进行文本分类,那么需要一个包含文本和标签的数据集。加载之前预训练好的BERT模型权重,然后将其嵌入到任务特定模型中。使用任务数据对整个模型进行微调,以适应具体任务。微调的目标是通过反向传播算法来调整模型的权重,以最大程度地提高任务性能。在微调完成后,使用验证数据集来评估模型的性能。

        推理:一旦微调完成并选择了最佳模型,就可以将该模型用于推理阶段,用来处理新的文本数据并产生预测或输出。对于新的文本数据,需要进行与预训练数据相同的预处理,包括分词、标记化等。将新数据传递给微调后的BERT模型,以获得模型的输出。

bert具体操作demo

        在使用BERT之前,首先需要具备如下环境:

        1.python 环境 我用的是3.8.5的

        2.相应的引用

pip install bertpip install bert-tensorflowpip install bert-serving-server --userpip install bert-serving-client --userpip install tensorflow==1.13.1

        3.代码下载 

谷歌的bert地址

        打开该地址后,页面搜索chinese,找到 如下内容。

        点击 BERT-Base, Chinese下载中文的预训练模型,也可以根据自己需要下载对应的模型。下载当前代码,使用pyCharm打开。

找到run_classifier.py文件,配置参数 运行它。

参数配置: parameters中具体内容:

--data_dir=data \
--task_name=sim \
--vocab_file=../GLUE/BERT_BASE_DIR/chinese_L-12_H-768_A-12/vocab.txt \
--bert_config_file=../GLUE/BERT_BASE_DIR/chinese_L-12_H-768_A-12/bert_config.json \
--output_dir=sim_model \
--do_train=true \
--do_eval=true \
--init_checkpoint=../GLUE/BERT_BASE_DIR/chinese_L-12_H-768_A-12/bert_model.ckpt \
--max_seq_length=70 \
--train_batch_size=32 \
--learning_rate=2e-5 \
--num_train_epochs=3.0 \

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/99840.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图像上传功能实现

一、后端 文件存放在images.path路径下 package com.like.common;import jakarta.servlet.ServletOutputStream; import jakarta.servlet.http.HttpServletResponse; import org.springframework.beans.factory.annotation.Value; import org.springframework.web.bind.annot…

若依微服务部署,裸服务部署、docker部署、k8s部署

目录 前言windows 部署若依-微服务版本浏览器验证docker部署若依-微服务版本浏览器验证k8s部署若依-微服务版本浏览器验证总结 前言 环境:centos7、Win10 若依是一个合适新手部署练习的开源的微服务项目,本篇讲解Windows部署若依微服务、docker部署若依…

2023 NewStarCTF --- wp

文章目录 前言Week1MiscCyberChefs Secret机密图片流量!鲨鱼!压缩包们空白格隐秘的眼睛 Web泄露的秘密Begin of UploadErrorFlaskBegin of HTTPBegin of PHPR!C!E!EasyLogin CryptobrainfuckCaesars SecertfenceVigenrebabyrsaSmall dbabyxorbabyencodin…

【广州华锐互动】车辆零部件检修AR远程指导系统有效提高维修效率和准确性

在快速发展的科技时代,我们的生活和工作方式正在被重新定义。这种变化在许多领域都有所体现,尤其是在汽车维修行业。近年来,AR(增强现实)技术的进步为这个行业带来了前所未有的可能性。通过将AR技术与远程协助系统相结…

Scala第十九章节

Scala第十九章节 scala总目录 文档资料下载 章节目标 了解Actor的相关概述掌握Actor发送和接收消息掌握WordCount案例 1. Actor介绍 Scala中的Actor并发编程模型可以用来开发比Java线程效率更高的并发程序。我们学习Scala Actor的目的主要是为后续学习Akka做准备。 1.1 Ja…

开源ERP和CRM套件Dolibarr

什么是 Dolibarr ? Dolibarr ERP & CRM 是一个现代软件包,用于管理您组织的活动(联系人、供应商、发票、订单、库存、议程…)。它是开源软件(用 PHP 编写),专为中小型企业、基金会和自由职业…

Python字典全解析:从基础到高级应用

更多资料获取 📚 个人网站:涛哥聊Python 字典是一种强大而多才多艺的数据类型,它以键-值对的形式储存信息,让我们能够以惊人的效率处理和管理数据。 字典能够将键和值关联在一起,使得数据的存储和检索变得非常高效。…

calc方法和vue中calc不生效踩坑

calc方法 calc()方法是css用来计算的,比如一个场景,上下固定高度,中间自适应,就可以使用这个方法。 预编译less也是可以使用这个方法的 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewp…

链表(7.27)

3.3 链表的实现 3.3.1头插 原理图&#xff1a; newnode为新创建的节点 实现&#xff1a; //头插 //让新节点指向原来的头指针&#xff08;节点&#xff09;&#xff0c;即新节点位于开头 newnode->next plist; //再让头指针&#xff08;节点&#xff09;指向新节点&#…

插入排序/折半插入排序

插入排序/折半插入排序 插入排序 插入排序(英语&#xff1a;Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入。插入排序在实现上&#xff0c;通常…

盲盒商城源码 盲盒开箱源码 潮物盲盒商城源码 仿CSGO盲盒开箱源码

百度seo的要求对于网页内容的伪原创是相对严格的,需要进行一定的修改使其符合百度seo的标准 根据您的要求,我们将对后面的这段话进行伪原创修改,只修改文字符号,不对字数进行调整: 盲盒商城源码、盲盒开箱源码、潮物盲盒商城源码、仿CSGO盲盒开箱源码 带有Vue源代码,前端…

git常用命令和开发常用场景

git命令 git init 创建一个空的git仓库或者重新初始化已有仓库 git clone [url] 将存储库克隆到新目录 git add 添加内容到索引 git status 显示工作树状态 git commit -m "" 记录仓库的修改 git reset 重置当前HEAD到指定的状态 git reset –-soft&#xff1a;…

2020架构真题(四十六)

、以下关于操作系统微内核架构特征的说法&#xff0c;不正确的是&#xff08;&#xff09;。 微内核的系统结构清晰&#xff0c;利于协作开发微内核代码量少&#xff0c;系统具有良好的可移植性微内核有良好的的伸缩性和扩展性微内核功能代码可以互相调用&#xff0c;性能很高…

3款国产办公软件,不仅好用,还支持linux国产操作系统

当提到国产办公软件并支持Linux国产操作系统时&#xff0c;以下是三款备受好评的软件&#xff1a; 1. WPS Office&#xff08;金山办公套件&#xff09; WPS Office是中国知名的办公软件套件&#xff0c;也是一款跨平台的应用程序。它包含文字处理、表格编辑和演示文稿等常见办…

06-进程间通信

学习目标 熟练使用pipe进行父子进程间通信熟练使用pipe进行兄弟进程间通信熟练使用fifo进行无血缘关系的进程间通信使用mmap进行有血缘关系的进程间通信使用mmap进行无血缘关系的进程间通信 2 进程间通信相关概念 2.1 什么是进程间通信 Linux环境下&#xff0c;进程地址空间…

STM32F030在使用内部参考电压 (VREFINT)时与STM32G070的区别

背景&#xff1a; 之前使用过STM32G070的内部参考电压来提升ADC采集的准确度&#xff08;STM32使用内部参考电压提高ADC采集准确度&#xff09;&#xff0c;所以本次使用STM32F030的芯片时直接把之前G070的代码拿过来用了&#xff0c;但是出现了问题。 查找资料发现两者不同&am…

STM32CubeMX学习笔记-USART_DMA

STM32CubeMX学习笔记-USART_DMA 一、DMA的概念二、数据传输方式普通模式循环模式 三、以串口方式讲解串口DMA方式发送函数&#xff1a;HAL_UART_Transmit_DMA串口DMA方式接收函数&#xff1a;HAL_UART_Receive_DMA获取未传输数据个数函数&#xff1a;__HAL_DMA_GET_COUNTER关闭…

如何在Apache和Resin环境中实现HTTP到HTTPS的自动跳转:一次全面的探讨与实践

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

【MySQL】基本查询(二)

文章目录 一. 结果排序二. 筛选分页结果三. Update四. Delete五. 截断表六. 插入查询结果结束语 操作如下表 //创建表结构 mysql> create table exam_result(-> id int unsigned primary key auto_increment,-> name varchar(20) not null comment 同学姓名,-> chi…

解决yolo无法指定显卡的问题,实测v5、v7、v8有效

方法1 基本上这个就能解决了&#xff01;&#xff01;&#xff01; 在train.py的最上方加上下面这两行&#xff0c;注意是最上面&#xff0c;其次指定的就是你要使用的显卡 import os os.environ[CUDA_VISIBLE_DEVICES]6方法2&#xff1a; **问题&#xff1a;**命令行参数指…