Scala第十九章节

Scala第十九章节

scala总目录
文档资料下载

章节目标

  1. 了解Actor的相关概述
  2. 掌握Actor发送和接收消息
  3. 掌握WordCount案例

1. Actor介绍

Scala中的Actor并发编程模型可以用来开发比Java线程效率更高的并发程序。我们学习Scala Actor的目的主要是为后续学习Akka做准备。

1.1 Java并发编程的问题

在Java并发编程中,每个对象都有一个逻辑监视器(monitor),可以用来控制对象的多线程访问。我们添加sychronized关键字来标记,需要进行同步加锁访问。这样,通过加锁的机制来确保同一时间只有一个线程访问共享数据。但这种方式存在资源争夺、以及死锁问题,程序越大问题越麻烦。
在这里插入图片描述

线程死锁
在这里插入图片描述

1.2 Actor并发编程模型

Actor并发编程模型,是Scala提供给程序员的一种与Java并发编程完全不一样的并发编程模型,是一种基于事件模型的并发机制。Actor并发编程模型是一种不共享数据,依赖消息传递的一种并发编程模式,有效避免资源争夺、死锁等情况。
在这里插入图片描述

1.3 Java并发编程对比Actor并发编程
Java内置线程模型Scala Actor模型
"共享数据-锁"模型 (share data and lock)share nothing
每个object有一个monitor,监视线程对共享数据的访问不共享数据,Actor之间通过Message通讯
加锁代码使用synchronized标识
死锁问题
每个线程内部是顺序执行的每个Actor内部是顺序执行的

注意:

  1. scala在2.11.x版本中加入了Akka并发编程框架,老版本已经废弃。

  2. Actor的编程模型和Akka很像,我们这里学习Actor的目的是为学习Akka做准备。

2. 创建Actor

我们可以通过类(class)或者单例对象(object), 继承Actor特质的方式, 来创建Actor对象.

2.1 步骤
  1. 定义class或object继承Actor特质
  2. 重写act方法
  3. 调用Actor的start方法执行Actor

注意: 每个Actor是并行执行的, 互不干扰.

2.2 案例一: 通过class实现

需求

  1. 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20
  2. 使用class继承Actor实现.(如果需要在程序中创建多个相同的Actor)

参考代码

import scala.actors.Actor//案例:Actor并发编程入门, 通过class创建Actor
object ClassDemo01 {//需求: 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20//1. 创建Actor1, 用来打印1~10的数字.class Actor1 extends Actor {override def act(): Unit = for (i <- 1 to 10) println("actor1: " + i)}//2. 创建Actor2, 用来打印11~20的数字.class Actor2 extends Actor {override def act(): Unit = for (i <- 11 to 20) println("actor2: " + i)}def main(args: Array[String]): Unit = {//3. 启动两个Actor.new Actor1().start()new Actor2().start()}
}
2.3 案例二: 通过object实现

需求

  1. 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20
  2. 使用object继承Actor实现.(如果在程序中只创建一个Actor)

参考代码

import scala.actors.Actor//案例:Actor并发编程入门, 通过object创建Actor
object ClassDemo02 {//需求: 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20//1. 创建Actor1, 用来打印1~10的数字.object Actor1 extends Actor {override def act(): Unit = for (i <- 1 to 10) println("actor1: " + i)}//2. 创建Actor2, 用来打印11~20的数字.object Actor2 extends Actor {override def act(): Unit = for (i <- 11 to 20) println("actor2: " + i)}def main(args: Array[String]): Unit = {//3. 启动两个Actor.Actor1.start()Actor2.start()}
}
2.4 Actor程序运行流程
  1. 调用start()方法启动Actor
  2. 自动执行act()方法
  3. 向Actor发送消息
  4. act方法执行完成后,程序会调用**exit()**方法结束程序执行.

3. 发送消息/接收消息

我们之前介绍Actor的时候,说过Actor是基于事件(消息)的并发编程模型,那么Actor是如何发送消息和接收消息的呢?

3.1 使用方式
3.1.1 发送消息

我们可以使用三种方式来发送消息:

发送异步消息,没有返回值
!?发送同步消息,等待返回值
!!发送异步消息,返回值是Future[Any]

例如:要给actor1发送一个异步字符串消息,使用以下代码:

actor1 ! "你好!"
3.1.2 接收消息

Actor中使用receive方法来接收消息,需要给receive方法传入一个偏函数

{case 变量名1:消息类型1 => 业务处理1case 变量名2:消息类型2 => 业务处理2...
}

注意: receive方法只接收一次消息,接收完后继续执行act方法

3.2 案例一: 发送及接收一句话

需求

  1. 创建两个Actor(ActorSender、ActorReceiver)
  2. ActorSender发送一个异步字符串消息给ActorReceiver
  3. ActorReceiver接收到该消息后,打印出来

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

参考代码

//案例: 采用 异步无返回的形式, 发送消息.
object ClassDemo03 {//1. 创建发送消息的Actor, ActorSender, 发送一句话给ActorReceiverobject ActorSender extends Actor {override def act(): Unit = {//发送一句话给ActorReceiverActorReceiver ! "你好啊, 我是ActorSender!"//发送第二句话ActorReceiver ! "你叫什么名字呀? "}}//2. 创建接收消息的Actor, ActorReceiverobject ActorReceiver extends Actor {override def act(): Unit = {//接收发送过来的消息.receive {case x: String => println(x)}}}def main(args: Array[String]): Unit = {//3. 启动两个ActorActorSender.start()ActorReceiver.start()}
}
3.3 案例二: 持续发送和接收消息

如果我们想实现ActorSender一直发送消息, ActorReceiver能够一直接收消息,该怎么实现呢?

答: 我们只需要使用一个while(true)循环,不停地调用receive来接收消息就可以啦。

需求

  1. 创建两个Actor(ActorSender、ActorReceiver)
  2. ActorSender持续发送一个异步字符串消息给ActorReceiver
  3. ActorReceiver持续接收消息,并打印出来

参考代码

//案例:Actor 持续发送和接收消息.
object ClassDemo04 {//1. 创建发送消息的Actor, ActorSender, 发送一句话给ActorReceiverobject ActorSender extends Actor {override def act(): Unit = {while(true) {//发送一句话给ActorReceiverActorReceiver ! "你好啊, 我是ActorSender!"//休眠3秒.TimeUnit.SECONDS.sleep(3)       //单位是: 秒}}}//2. 创建接收消息的Actor, ActorReceiverobject ActorReceiver extends Actor {override def act(): Unit = {//接收发送过来的消息,  持续接收.while(true) {receive {case x: String => println(x)}}}}def main(args: Array[String]): Unit = {//3. 启动两个ActorActorSender.start()ActorReceiver.start()}
}
3.4 案例三: 优化持续接收消息

上述代码,是用while循环来不断接收消息的, 这样做可能会遇到如下问题:

  • 如果当前Actor没有接收到消息,线程就会处于阻塞状态
  • 如果有很多的Actor,就有可能会导致很多线程都是处于阻塞状态
  • 每次有新的消息来时,重新创建线程来处理
  • 频繁的线程创建、销毁和切换,会影响运行效率

针对上述情况, 我们可以使用loop(), 结合react()来复用线程, 这种方式比while循环 + receive()更高效.

需求

  1. 创建两个Actor(ActorSender、ActorReceiver)
  2. ActorSender持续发送一个异步字符串消息给ActorReceiver
  3. ActorReceiver持续接收消息,并打印出来

注意: 使用loop + react重写上述案例.

参考代码

//案例: 使用loop + react循环接收消息.
object ClassDemo05 {//1. 创建发送消息的Actor, ActorSender, 发送一句话给ActorReceiverobject ActorSender extends Actor {override def act(): Unit = {while(true) {//发送一句话给ActorReceiverActorReceiver ! "你好啊, 我是ActorSender!"//休眠3秒.TimeUnit.SECONDS.sleep(3)       //单位是: 秒}}}//2. 创建接收消息的Actor, ActorReceiverobject ActorReceiver extends Actor {override def act(): Unit = {//接收发送过来的消息,  持续接收.loop{react {case x: String => println(x)}}}}def main(args: Array[String]): Unit = {//3. 启动两个ActorActorSender.start()ActorReceiver.start()}
}
3.5 案例四: 发送和接收自定义消息

我们前面发送的消息都是字符串类型,Actor中也支持发送自定义消息,例如:使用样例类封装消息,然后进行发送处理。

3.5.1 示例一: 发送同步有返回消息

需求

  1. 创建一个MsgActor,并向它发送一个同步消息,该消息包含两个字段(id、message)
  2. MsgActor回复一个消息,该消息包含两个字段(message、name)
  3. 打印回复消息

注意:

  • 使用!?来发送同步消息
  • 在Actor的act方法中,可以使用sender获取发送者的Actor引用

参考代码

//案例: Actor发送和接收自定义消息, 采用 同步有返回的形式
object ClassDemo06 {//1. 定义两个样例类Message(表示发送数据),   ReplyMessage(表示返回数据.)case class Message(id: Int, message: String) //自定义的发送消息 样例类case class ReplyMessage(message: String, name: String) //自定义的接收消息 样例类//2. 创建一个MsgActor,用来接收MainActor发送过来的消息, 并向它回复一条消息.object MsgActor extends Actor {override def act(): Unit = {//2.1 接收 主Actor(MainActor) 发送过来的消息.loop {react {//结合偏函数使用case Message(id, message) => println(s"我是MsgActor, 我收到的消息是: ${id}, ${message}")//2.2 给MainActor回复一条消息.//sender: 获取消息发送方的Actor对象sender ! ReplyMessage("我很不好, 熏死了!...", "车磊")}}}}def main(args: Array[String]): Unit = {//3. 开启MsgActorMsgActor.start()//4. 通过MainActor, 给MsgActor发送一个 Message对象.//采用 !?  同步有返回.val reply:Any = MsgActor !? Message(1, "你好啊, 我是MainActor, 我在给你发消息!")//resutl表示最终接收到的 返回消息.val result = reply.asInstanceOf[ReplyMessage]//5. 输出结果.println(result)}
}
3.5.2 示例二: 发送异步无返回消息

需求

创建一个MsgActor,并向它发送一个异步无返回消息,该消息包含两个字段(id, message)

注意: 使用!发送异步无返回消息

参考代码

//案例: Actor发送和接收自定义消息, 采用 异步 无返回的形式
object ClassDemo07 {//1. 定义一个样例类Message(表示发送数据)case class Message(id: Int, message: String) //自定义的发送消息 样例类//2. 创建一个MsgActor,用来接收MainActor发送过来的消息, 并打印.object MsgActor extends Actor {override def act(): Unit = {//2.1 接收 主Actor(MainActor) 发送过来的消息.loop {react {//结合偏函数使用case Message(id, message) => println(s"我是MsgActor, 我收到的消息是: ${id}, ${message}")}}}}def main(args: Array[String]): Unit = {//3. 开启MsgActorMsgActor.start()//4. 通过MainActor, 给MsgActor发送一个 Message对象.//采用 !  异步无返回MsgActor ! Message(1, "我是采用 异步无返回 的形式发送消息!")}
}
3.5.3 示例三: 发送异步有返回消息

需求

  1. 创建一个MsgActor,并向它发送一个异步有返回消息,该消息包含两个字段(id、message)
  2. MsgActor回复一个消息,该消息包含两个字段(message、name)
  3. 打印回复消息

注意:

  • 使用!!发送异步有返回消息
  • 发送后,返回类型为Future[Any]的对象
  • Future表示异步返回数据的封装,虽获取到Future的返回值,但不一定有值,可能在将来某一时刻才会返回消息
  • Future的isSet()可检查是否已经收到返回消息,apply()方法可获取返回数据

图解
在这里插入图片描述

参考代码

//案例: Actor发送和接收自定义消息, 采用 异步有返回的形式
object ClassDemo08 {//1. 定义两个样例类Message(表示发送数据),   ReplyMessage(表示返回数据.)case class Message(id: Int, message: String) //自定义的发送消息 样例类case class ReplyMessage(message: String, name: String) //自定义的接收消息 样例类//2. 创建一个MsgActor,用来接收MainActor发送过来的消息, 并向它回复一条消息.object MsgActor extends Actor {override def act(): Unit = {//2.1 接收 主Actor(MainActor) 发送过来的消息.loop {react {//结合偏函数使用case Message(id, message) => println(s"我是MsgActor, 我收到的消息是: ${id}, ${message}")//2.2 给MainActor回复一条消息.//sender: 获取消息发送方的Actor对象sender ! ReplyMessage("我很不好, 熏死了!...", "糖糖")}}}}def main(args: Array[String]): Unit = {//3. 开启MsgActorMsgActor.start()//4. 通过MainActor, 给MsgActor发送一个 Message对象.//采用 !!  异步有返回.val future: Future[Any] = MsgActor !! Message(1, "你好啊, 我是MainActor, 我在给你发消息!")//5. 因为future中不一定会立马有数据, 所以我们要校验.//Future的isSet()可检查是否已经收到返回消息,apply()方法可获取返回数据//!future.isSet表示: 没有接收到具体的返回消息, 就一直死循环.while(!future.isSet){}//通过Future的apply()方法来获取返回的数据.val result = future.apply().asInstanceOf[ReplyMessage]//5. 输出结果.println(result)}
}

4. 案例: WordCount

4.1 需求

接下来,我们要使用Actor并发编程模型实现多文件的单词统计

案例介绍

给定几个文本文件(文本文件都是以空格分隔的),使用Actor并发编程来统计单词的数量.

思路分析
在这里插入图片描述

实现思路

  1. MainActor获取要进行单词统计的文件
  2. 根据文件数量创建对应的WordCountActor
  3. 将文件名封装为消息发送给WordCountActor
  4. WordCountActor接收消息,并统计单个文件的单词计数
  5. 将单词计数结果发送给MainActor
  6. MainActor等待所有的WordCountActor都已经成功返回消息,然后进行结果合并
4.2 步骤一: 获取文件列表

实现思路

  1. 在当前项目下的data文件夹下有: 1.txt, 2.txt两个文本文件, 具体存储内容如下:

    1.txt文本文件存储内容如下:

    hadoop sqoop hadoop
    hadoop hadoop flume
    hadoop hadoop hadoop
    spark
    

    2.txt文本文件存储内容如下:

    flink hadoop hive
    hadoop sqoop hadoop
    hadoop hadoop hadoop
    spark
    
  2. 获取上述两个文本文件的路径, 并将结果打印到控制台上.

参考代码

object MainActor {def main(args: Array[String]): Unit = {//1. 获取所有要统计的文件的路径.//1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/var dir = "./data/"//1.2 获取该文件夹下, 所有的文件名.var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")//1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txtvar fileDirList = fileNameList.map(dir + _)//println(fileDirList)}
}
4.3 步骤二: 创建WordCountActor

实现思路

  1. 根据文件数量创建对应个数的WordCountActor对象.
  2. 为了方便后续发送消息给Actor,将每个Actor与文件名关联在一起

实现步骤

  1. 创建WordCountActor
  2. 将文件列表转换为WordCountActor
  3. 为了后续方便发送消息给Actor,将Actor列表和文件列表拉链到一起
  4. 打印测试

参考代码

  • WordCountActor.scala文件中的代码

    //2.1 先创建WordCountActor类, 用来获取WordCountActor对象.
    //创建WordCountActor类, 每一个WordCountActor对象, 统计一个文件.
    class WordCountActor extends Actor {override def act(): Unit = { }
    }
  • MainActor.scala文件中的代码

    object MainActor {def main(args: Array[String]): Unit = {//1. 获取所有要统计的文件的路径.//1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/var dir = "./data/"//1.2 获取该文件夹下, 所有的文件名.var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")//1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txtvar fileDirList = fileNameList.map(dir + _)//println(fileDirList)//2. 根据文件数量, 创建对应的WordCountActor对象.//2.1 先创建WordCountActor类, 用来获取WordCountActor对象.//2.2 根据文件数量, 创建对应的WordCountActor对象.val wordCountList = fileNameList.map(_ => new WordCountActor) //根据两个txt文件, 创建了两个wordCount对象.//println(wordCountList)//2.3 将WordCountActor和文件全路径关联起来val actorWithFile = wordCountList.zip(fileDirList) //WordCountActor -> ./data/1.txt ,  WordCountActor -> ./data/2.txtprintln(actorWithFile)}
    }
    
4.4 步骤三: 启动Actor/发送/接收任务消息

实现思路

启动所有WordCountActor对象,并发送单词统计任务消息给每个WordCountActor对象.

注意: 此处应发送异步有返回消息

实现步骤

  1. 创建一个WordCountTask样例类消息,封装要进行单词计数的文件名
  2. 启动所有WordCountActor,并发送异步有返回消息
  3. 获取到所有的WordCountActor中返回的消息(封装到一个Future列表中)
  4. 在WordCountActor中接收并打印消息

参考代码

  • MessagePackage.scala文件中的代码

    /*** 表示: MainActor 给每一个WordCountActor发送任务的 格式.* @param fileName 具体的要统计的 文件路径.*/
    case class WordCountTask(fileName:String)
    
  • MainActor.scala文件中的代码

    object MainActor {def main(args: Array[String]): Unit = {//1. 获取所有要统计的文件的路径.//1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/var dir = "./data/"//1.2 获取该文件夹下, 所有的文件名.var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")//1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txtvar fileDirList = fileNameList.map(dir + _)//println(fileDirList)//2. 根据文件数量, 创建对应的WordCountActor对象.//2.1 先创建WordCountActor类, 用来获取WordCountActor对象.//2.2 根据文件数量, 创建对应的WordCountActor对象.val wordCountList = fileNameList.map(_ => new WordCountActor) //根据两个txt文件, 创建了两个wordCount对象.//println(wordCountList)//2.3 将WordCountActor和文件全路径关联起来val actorWithFile = wordCountList.zip(fileDirList) //WordCountActor -> ./data/1.txt ,  WordCountActor -> ./data/2.txtprintln(actorWithFile)//3. 启动WordCountActor, 并给每一个WordCountActor发送任务./*Map(spark -> 1, hadoop -> 7, sqoop -> 1, flume -> 1)Map(sqoop -> 1, flink -> 1, hadoop -> 6, spark -> 1, hive -> 1)*/val futureList: List[Future[Any]] = actorWithFile.map {       //futureList: 记录的是所有WordCountActor统计的结果.keyVal => //keyVal的格式: WordCountActor -> ./data/1.txt//3.1 获取具体的要启动的WordCountActor对象.val actor = keyVal._1 //actor: WordCountActor//3.2 启动具体的WordCountActor.actor.start()//3.3 给每个WordCountActor发送具体的任务(文件路径)  异步有返回.val future: Future[Any] = actor !! WordCountTask(keyVal._2)future      //记录的是某一个WordCountActor返回的统计结果.}}
    }
    
  • WordCountActor.scala文件中的代码

    //2.1 先创建WordCountActor类, 用来获取WordCountActor对象.
    //创建WordCountActor类, 每一个WordCountActor对象, 统计一个文件.
    class WordCountActor extends Actor {override def act(): Unit = { loop {react {//3.4 接收具体的任务case WordCountTask(fileName) =>//3.5 打印具体的任务println(s"接收到的具体任务是: ${fileName}")}}}
    }
    
4.5 步骤四: 统计文件单词计数

实现思路

读取文件文本,并统计出来单词的数量。例如:

(hadoop, 3), (spark, 1)...

实现步骤

  1. 读取文件内容,并转换为列表
  2. 按照空格切割文本,并转换为一个一个的单词
  3. 为了方便进行计数,将单词转换为元组
  4. 按照单词进行分组,然后再进行聚合统计
  5. 打印聚合统计结果

参考代码

  • WordCountActor.scala文件中的代码

    class WordCountActor extends Actor {override def act(): Unit = {//采用loop + react 方式接收数据.loop {react {//3.4 接收具体的任务case WordCountTask(fileName) =>//3.5 打印具体的任务println(s"接收到的具体任务是: ${fileName}")//4. 统计接收到的文件中的每个单词的数量.//4.1 获取指定文件中的所有的文件. List("hadoop sqoop hadoop","hadoop hadoop flume")val lineList = Source.fromFile(fileName).getLines().toList//4.2 将上述获取到的数据, 转换成一个一个的字符串.  //List("hadoop", "sqoop", "hadoop","hadoop", "hadoop", "flume")val strList = lineList.flatMap(_.split(" "))//4.3 给每一个字符串后边都加上次数, 默认为1.             //List("hadoop"->1, "sqoop"->1, "hadoop"->1, "hadoop"->1, "flume"->1)val wordAndCount = strList.map(_ -> 1)//4.4 按照 字符串内容分组.                              //"hadoop" -> List("hadoop"->1, "hadoop"->1),   "sqoop" -> List("sqoop"->1)val groupMap = wordAndCount.groupBy(_._1)//4.5 对分组后的内容进行统计, 统计每个单词的总次数.    "hadoop" -> 2,   "sqoop" -> 1val wordCountMap = groupMap.map(keyVal => keyVal._1 -> keyVal._2.map(_._2).sum)//4.6 打印统计后的结果. println(wordCountMap)}}}
    }
    
4.6 步骤五: 返回结果给MainActor

实现思路

  • 将单词计数的结果封装为一个样例类消息,并发送给MainActor
  • MainActor等待所有WordCountActor均已返回后,获取到每个WordCountActor单词计算后的结果

实现步骤

  1. 定义一个样例类封装单词计数结果
  2. 将单词计数结果发送给MainActor
  3. MainActor中检测所有WordCountActor是否均已返回,如果均已返回,则获取并转换结果
  4. 打印结果

参考代码

  • MessagePackage.scala文件中的代码

    /*** 表示: MainActor 给每一个WordCountActor发送任务的 格式.* @param fileName 具体的要统计的 文件路径.*/
    case class WordCountTask(fileName:String)/*** 每个WordCountActor统计完的返回结果的: 格式* @param wordCountMap  具体的返回结果, 例如:  Map("hadoop"->6, "sqoop"->1)*/
    case class WordCountResult(wordCountMap:Map[String, Int])
    
  • WordCountActor.scala文件中的代码

    class WordCountActor extends Actor {override def act(): Unit = {//采用loop + react 方式接收数据.loop {react {//3.4 接收具体的任务case WordCountTask(fileName) =>//3.5 打印具体的任务println(s"接收到的具体任务是: ${fileName}")//4. 统计接收到的文件中的每个单词的数量.//4.1 获取指定文件中的所有的文件.                       List("hadoop sqoop hadoop","hadoop hadoop flume")val lineList = Source.fromFile(fileName).getLines().toList//4.2 将上述获取到的数据, 转换成一个一个的字符串.        List("hadoop", "sqoop", "hadoop","hadoop", "hadoop", "flume")val strList = lineList.flatMap(_.split(" "))//4.3 给每一个字符串后边都加上次数, 默认为1.             List("hadoop"->1, "sqoop"->1, "hadoop"->1,"hadoop"->1, "hadoop"->1, "flume"->1)val wordAndCount = strList.map(_ -> 1)//4.4 按照 字符串内容分组.                              "hadoop" -> List("hadoop"->1, "hadoop"->1),   "sqoop" -> List("sqoop"->1)val groupMap = wordAndCount.groupBy(_._1)//4.5 对分组后的内容进行统计, 统计每个单词的总次数.      "hadoop" -> 2,   "sqoop" -> 1val wordCountMap = groupMap.map(keyVal => keyVal._1 -> keyVal._2.map(_._2).sum)//4.6 把统计后的结果返回给: MainActor.sender ! WordCountResult(wordCountMap)}}}
    }
    
4.7 步骤六: 结果合并

实现思路

对接收到的所有单词计数进行合并。

参考代码

  • MainActor.scala文件中的代码

    object MainActor {def main(args: Array[String]): Unit = {//1. 获取所有要统计的文件的路径.//1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/var dir = "./data/"//1.2 获取该文件夹下, 所有的文件名.var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")//1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txtvar fileDirList = fileNameList.map(dir + _)//println(fileDirList)//2. 根据文件数量, 创建对应的WordCountActor对象.//2.1 先创建WordCountActor类, 用来获取WordCountActor对象.//2.2 根据文件数量, 创建对应的WordCountActor对象.val wordCountList = fileNameList.map(_ => new WordCountActor) //根据两个txt文件, 创建了两个wordCount对象.//println(wordCountList)//2.3 将WordCountActor和文件全路径关联起来val actorWithFile = wordCountList.zip(fileDirList) //WordCountActor -> ./data/1.txt ,  WordCountActor -> ./data/2.txtprintln(actorWithFile)//3. 启动WordCountActor, 并给每一个WordCountActor发送任务./*Map(spark -> 1, hadoop -> 7, sqoop -> 1, flume -> 1)Map(sqoop -> 1, flink -> 1, hadoop -> 6, spark -> 1, hive -> 1)*/val futureList: List[Future[Any]] = actorWithFile.map {       //futureList: 记录的是所有WordCountActor统计的结果.keyVal => //keyVal的格式: WordCountActor -> ./data/1.txt//3.1 获取具体的要启动的WordCountActor对象.val actor = keyVal._1 //actor: WordCountActor//3.2 启动具体的WordCountActor.actor.start()//3.3 给每个WordCountActor发送具体的任务(文件路径)  异步有返回.val future: Future[Any] = actor !! WordCountTask(keyVal._2)future      //记录的是某一个WordCountActor返回的统计结果.}//5. MainActor对接收到的数据进行合并.//5.1 判断所有的future都有返回值后, 再往下执行.//       过滤没有返回值的future         不为0说明还有future没有收到值while(futureList.filter(!_.isSet).size != 0) {} //futureList:  future1, future2//5.2 从每一个future中获取数据.//wordCountMap:  List(Map(spark -> 1, hadoop -> 7, sqoop -> 1, flume -> 1), Map(sqoop -> 1, flink -> 1, hadoop -> 6, spark -> 1, hive -> 1))val wordCountMap = futureList.map(_.apply().asInstanceOf[WordCountResult].wordCountMap)//5.3 对获取的数据进行flatten, groupBy, map, 然后统计.val result = wordCountMap.flatten.groupBy(_._1).map(keyVal => keyVal._1 -> keyVal._2.map(_._2).sum)//5.4 打印结果println(result)}
    }
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/99833.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开源ERP和CRM套件Dolibarr

什么是 Dolibarr &#xff1f; Dolibarr ERP & CRM 是一个现代软件包&#xff0c;用于管理您组织的活动&#xff08;联系人、供应商、发票、订单、库存、议程…&#xff09;。它是开源软件&#xff08;用 PHP 编写&#xff09;&#xff0c;专为中小型企业、基金会和自由职业…

Python字典全解析:从基础到高级应用

更多资料获取 &#x1f4da; 个人网站&#xff1a;涛哥聊Python 字典是一种强大而多才多艺的数据类型&#xff0c;它以键-值对的形式储存信息&#xff0c;让我们能够以惊人的效率处理和管理数据。 字典能够将键和值关联在一起&#xff0c;使得数据的存储和检索变得非常高效。…

calc方法和vue中calc不生效踩坑

calc方法 calc()方法是css用来计算的,比如一个场景,上下固定高度,中间自适应,就可以使用这个方法。 预编译less也是可以使用这个方法的 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewp…

链表(7.27)

3.3 链表的实现 3.3.1头插 原理图&#xff1a; newnode为新创建的节点 实现&#xff1a; //头插 //让新节点指向原来的头指针&#xff08;节点&#xff09;&#xff0c;即新节点位于开头 newnode->next plist; //再让头指针&#xff08;节点&#xff09;指向新节点&#…

插入排序/折半插入排序

插入排序/折半插入排序 插入排序 插入排序(英语&#xff1a;Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入。插入排序在实现上&#xff0c;通常…

盲盒商城源码 盲盒开箱源码 潮物盲盒商城源码 仿CSGO盲盒开箱源码

百度seo的要求对于网页内容的伪原创是相对严格的,需要进行一定的修改使其符合百度seo的标准 根据您的要求,我们将对后面的这段话进行伪原创修改,只修改文字符号,不对字数进行调整: 盲盒商城源码、盲盒开箱源码、潮物盲盒商城源码、仿CSGO盲盒开箱源码 带有Vue源代码,前端…

git常用命令和开发常用场景

git命令 git init 创建一个空的git仓库或者重新初始化已有仓库 git clone [url] 将存储库克隆到新目录 git add 添加内容到索引 git status 显示工作树状态 git commit -m "" 记录仓库的修改 git reset 重置当前HEAD到指定的状态 git reset –-soft&#xff1a;…

2020架构真题(四十六)

、以下关于操作系统微内核架构特征的说法&#xff0c;不正确的是&#xff08;&#xff09;。 微内核的系统结构清晰&#xff0c;利于协作开发微内核代码量少&#xff0c;系统具有良好的可移植性微内核有良好的的伸缩性和扩展性微内核功能代码可以互相调用&#xff0c;性能很高…

3款国产办公软件,不仅好用,还支持linux国产操作系统

当提到国产办公软件并支持Linux国产操作系统时&#xff0c;以下是三款备受好评的软件&#xff1a; 1. WPS Office&#xff08;金山办公套件&#xff09; WPS Office是中国知名的办公软件套件&#xff0c;也是一款跨平台的应用程序。它包含文字处理、表格编辑和演示文稿等常见办…

06-进程间通信

学习目标 熟练使用pipe进行父子进程间通信熟练使用pipe进行兄弟进程间通信熟练使用fifo进行无血缘关系的进程间通信使用mmap进行有血缘关系的进程间通信使用mmap进行无血缘关系的进程间通信 2 进程间通信相关概念 2.1 什么是进程间通信 Linux环境下&#xff0c;进程地址空间…

STM32F030在使用内部参考电压 (VREFINT)时与STM32G070的区别

背景&#xff1a; 之前使用过STM32G070的内部参考电压来提升ADC采集的准确度&#xff08;STM32使用内部参考电压提高ADC采集准确度&#xff09;&#xff0c;所以本次使用STM32F030的芯片时直接把之前G070的代码拿过来用了&#xff0c;但是出现了问题。 查找资料发现两者不同&am…

STM32CubeMX学习笔记-USART_DMA

STM32CubeMX学习笔记-USART_DMA 一、DMA的概念二、数据传输方式普通模式循环模式 三、以串口方式讲解串口DMA方式发送函数&#xff1a;HAL_UART_Transmit_DMA串口DMA方式接收函数&#xff1a;HAL_UART_Receive_DMA获取未传输数据个数函数&#xff1a;__HAL_DMA_GET_COUNTER关闭…

如何在Apache和Resin环境中实现HTTP到HTTPS的自动跳转:一次全面的探讨与实践

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

【MySQL】基本查询(二)

文章目录 一. 结果排序二. 筛选分页结果三. Update四. Delete五. 截断表六. 插入查询结果结束语 操作如下表 //创建表结构 mysql> create table exam_result(-> id int unsigned primary key auto_increment,-> name varchar(20) not null comment 同学姓名,-> chi…

解决yolo无法指定显卡的问题,实测v5、v7、v8有效

方法1 基本上这个就能解决了&#xff01;&#xff01;&#xff01; 在train.py的最上方加上下面这两行&#xff0c;注意是最上面&#xff0c;其次指定的就是你要使用的显卡 import os os.environ[CUDA_VISIBLE_DEVICES]6方法2&#xff1a; **问题&#xff1a;**命令行参数指…

C#:出题并判断

C#:出题并判断 //出题并判断 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Forms;namespace Test_…

# 解析Pikachu靶场:一个安全研究的练习场

引言 Pikachu靶场是一个非常流行的安全研究和渗透测试练习平台。这个环境包括多个安全漏洞&#xff0c;从基础的到高级的&#xff0c;供安全研究人员和渗透测试者进行实验和学习。在这篇博客中&#xff0c;我们将探讨Pikachu靶场的基本概念&#xff0c;功能&#xff0c;以及如…

使用安卓Termux+Hexo,手机也能轻松搭建个人博客网站

文章目录 前言1.安装 Hexo2.安装cpolar3.远程访问4.固定公网地址5.结语 前言 Hexo 是一个用 Nodejs 编写的快速、简洁且高效的博客框架。Hexo 使用 Markdown 解析文章&#xff0c;在几秒内&#xff0c;即可利用靓丽的主题生成静态网页。 下面介绍在Termux中安装个人hexo博客并…

stl 输入输出流

标准输入输出流 头文件 iostream 从标准输入读取流 cin >> 从标准输出写入流 cout << get 系列函数 get 无参数&#xff1a;cin.get() 从指定的输入流中提取一个字符&#xff08;包括空白字符&#xff09;&#xff0c;若读取成功&#xff0c;返回该字符的 ASC…

论文分享 | 利用单模态自监督学习实现多模态AVSR

本次分享上海交通大学发表在 ACL 2022 会议 的论文《Leveraging Unimodal Self-Supervised Learning for Multimodal AVSR》。该论文利用大规模单模态自监督学习构建多模态语音识别模型。 论文地址&#xff1a; https://aclanthology.org/2022.acl-long.308.pdf 代码仓库&am…