竞赛选题 深度学习 python opencv 火焰检测识别 火灾检测

文章目录

  • 0 前言
  • 1 基于YOLO的火焰检测与识别
  • 2 课题背景
  • 3 卷积神经网络
    • 3.1 卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 YOLOV5
    • 4.1 网络架构图
    • 4.2 输入端
    • 4.3 基准网络
    • 4.4 Neck网络
    • 4.5 Head输出层
  • 5 数据集准备
    • 5.1 数据标注简介
    • 5.2 数据保存
  • 6 模型训练
    • 6.1 修改数据配置文件
    • 6.2 修改模型配置文件
    • 6.3 开始训练模型
  • 7 实现效果
    • 7.1图片效果
    • 7.2 视频效果
    • 7.3 摄像头实时效果
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的火焰识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 基于YOLO的火焰检测与识别

学长设计系统实现效果如下,精度不错!

在这里插入图片描述

在这里插入图片描述

2 课题背景

火灾事故的频发给社会造成不必要的财富损失以及人员伤亡,在当今这个社会消防也是收到越来越多的注视。火灾在发生初期是很容易控制的,因此,如何在对可能发生灾害的场所进行有效监控,使得潜在的损失危害降到最低是当前研究的重点内容。传统的探测器有较大的局限性,感温、感烟的探测器的探测灵敏度相对争分夺秒的灾情控制来说有着时间上的不足,而且户外场所的适用性大大降低。随着计算机视觉的发展,基于深度学习的图像处理技术已经愈发成熟并且广泛应用在当今社会的许多方面,其在人脸识别、安防、医疗、军事等领域已经有相当一段时间的实际应用,在其他领域也展现出跟广阔的前景。利用深度学习图像处理技术对火灾场景下火焰的特征学习、训练神经网络模型自动识别火焰,这项技术可以对具有监控摄像头场景下的火灾火焰进行自动、快速、准确识别并设置预警装置,从而在火灾发生的初期及时响应,赢得更多的时间,把损失降到最低。

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

在这里插入图片描述

3.1 卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

4 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

4.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

4.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

4.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

4.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

4.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

==>40×40×255==>20×20×255==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
    

5 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

5.1 数据标注简介

通过pip指令即可安装

pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

在这里插入图片描述

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

5.2 数据保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

6 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

6.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为fire.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,我这里是识别有无火焰,所以这里填写2;最后箭头4中填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。

在这里插入图片描述

6.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。

在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:

在这里插入图片描述

6.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

7 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI

#部分代码from PyQt5 import QtCore, QtGui, QtWidgetsclass Ui_Win_mask(object):def setupUi(self, Win_mask):Win_mask.setObjectName("Win_mask")Win_mask.resize(1107, 868)Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n""ui.pushButton->setStyleSheet(qstrStylesheet);")self.frame = QtWidgets.QFrame(Win_mask)self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)self.frame.setFrameShadow(QtWidgets.QFrame.Raised)self.frame.setObjectName("frame")self.pushButton = QtWidgets.QPushButton(self.frame)self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton.setFont(font)self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton.setObjectName("pushButton")self.pushButton_2 = QtWidgets.QPushButton(self.frame)self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))font = QtGui.QFont()font.setBold(True)font.setUnderline(True)font.setWeight(75)self.pushButton_2.setFont(font)self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")self.pushButton_2.setObjectName("pushButton_2")self.pushButton_3 = QtWidgets.QPushButton(self.frame)self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))QtCore.QMetaObject.connectSlotsByName(Win_mask)

7.1图片效果

在这里插入图片描述

7.2 视频效果

在这里插入图片描述

7.3 摄像头实时效果

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/98389.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习记忆——数学篇——案例——代数——均值不等式

文章目录 理解记忆法定义定义推导 重点记忆法用途记忆法使用前提做题应用及易错点两种用法 出题模式法模型识别 谐音记忆法一正二定三相等 秒杀方法 理解记忆法 定义 1.算术平均值:设有n个数 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1​,x2​,...,xn​&#xf…

【LeetCode: 901. 股票价格跨度 | 单调栈】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

如何在VS2022中进行调试bug,调试的快捷键,debug与release之间有什么区别

什么是bug 在学习编程的过程中,应该都听说过bug吧,那么bug这个词究竟是怎么来的呢? 其实Bug的本意是“虫子”或者“昆虫”,在1947年9月9日,格蕾丝赫柏,一位为美国海军工作的电脑专家,也是最早…

【linux进程(三)】进程有哪些状态?--Linux下常见的三种进程状态

💓博主CSDN主页:杭电码农-NEO💓   ⏩专栏分类:Linux从入门到精通⏪   🚚代码仓库:NEO的学习日记🚚   🌹关注我🫵带你学更多操作系统知识   🔝🔝 Linux进程 1. 前言2. 操作系统…

十五、异常(5)

本章概要 异常限制构造器 异常限制 当覆盖方法的时候,只能抛出在基类方法的异常说明里列出的那些异常。这个限制很有用,因为这意味着与基类一起工作的代码,也能和导出类一起正常工作(这是面向对象的基本概念)&#…

大话机器学习准确率(Accuracy)、精确率(Pecision)、召回率(Recall)以及TP、FP、TN、FN

话说三国时期,乱世出人才,当时刘备让张飞帮忙招兵买马,寻找人才。张飞发公告以后,有10人来面试,这10人分为两类,人才和庸才,各占百分之五十,张飞的主要作用就是从这10人中识别出人才…

UWB PDOA定位原理

以下是笔记总结,内容不完全正确 1,什么是PDOA PDOA &#xff0c;英文全称是Phase-Difference-of-Arrival&#xff0c;信号到达相位差 PDOA定位算法的原理如下&#xff1a; UWB基站上放置两个相同且间隔d<λ/2的天线&#xff0c;UWB标签上的信号到达两个天线的相位差就在-180…

Docker Cgroups资源控制

Cgroup资源控制 Docker 通过 Cgroup 来控制容器使用的资源配额&#xff0c;包括 CPU、内存、磁盘三大方面&#xff0c; 基本覆盖了常见的资源配额和使用量控制。 Cgroup 是 ControlGroups 的缩写&#xff0c;是 Linux 内核提供的一种可以限制、记录、隔离进程组所使用的物理资源…

无为WiFi的一批服务器

我们在多个地区拥有高速服务器&#xff0c;保证网速给力&#xff0c;刷片无压力 嘿嘿 <?phpinclude("./includes/common.php"); $actisset($_GET[act])?daddslashes($_GET[act]):null; $urldaddslashes($_GET[url]); $authcodedaddslashes($_GET[authcode]);he…

多无人机编队集群飞行

matlab2016b可直接运行 多无人机集群编队飞行&#xff08;8架无人机&#xff09;资源-CSDN文库

逻辑回归评分卡

文章目录 一、基础知识点(1)逻辑回归表达式(2)sigmoid函数的导数损失函数(Cross-entropy, 交叉熵损失函数)交叉熵求导准确率计算评估指标 二、导入库和数据集导入库读取数据 三、分析与训练四、模型评价ROC曲线KS值再做特征筛选生成报告 五、行为评分卡模型表现总结 一、基础知…

manual control lost 飞机乱飞

Gazebo或jmavsim里仿真都这样&#xff0c;突然QGC会出现 manual control lost&#xff0c;然后飞机会乱飞 解决方案1&#xff1a; 把 NAV_RCL_ACT 设置为 Disable&#xff0c;相当于关闭遥控器丢失失效保护&#xff0c;默认是Return返航&#xff0c;所以会乱飞。 解决方案2&a…

实体机 安装 centos

实体机 安装 centos 制作U盘的时候&#xff0c;使用的ultraISO 同样方法一个u盘制作的有问题&#xff0c; 另外一个制作的没有问题。 可能和选择 usb-hdd 或者 usb-hdd 有关 https://mirrors.tuna.tsinghua.edu.cn/centos/7.9.2009/isos/x86_64/ 参考文档&#xff1a; http:…

《Python 自动化办公应用大全》书籍推荐(包邮送书五本)

前言 随着科技的快速发展和智能化办公的需求增加&#xff0c;Python自动化办公成为了一种趋势。Python作为一种高级编程语言&#xff0c;具有简单易学、功能强大和开放源代码等优势&#xff0c;可以帮助我们更高效地完成日常办公任务。 Python自动化办公还可以帮助我们实现更…

华为数通方向HCIP-DataCom H12-831题库(单选题:221-240)

第221题 以下哪些项能被正则表达式^30.成功匹配? A、200 100 300 B、100 200 300 C、300 200 100 D、300 100 200 答案:CD 解析: 30.其中的“点”表示的是任何的一个数字,表示的是as-path的开头;所以以300开头的都是满足题目需求的。 第222题 以下哪些项的Community属性能…

厌烦了iPhone默认的热点名称?如何更改iPhone上的热点名称

你对你默认的热点名称感到厌倦了吗&#xff1f;这篇文章是为你准备的。在这里&#xff0c;你可以了解如何轻松更改iPhone上的热点名称。 个人热点会将你的手机数据转换为Wi-Fi信号。手机上的个人热点使用户能够与其他用户共享其蜂窝数据连接。当你在WIFI网络之外时&#xff0c…

时序预测 | MATLAB实现ICEEMDAN-IMPA-GRU时间序列预测

时序预测 | MATLAB实现ICEEMDAN-IMPA-GRU时间序列预测 目录 时序预测 | MATLAB实现ICEEMDAN-IMPA-GRU时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 ICEEMDAN-IMPA-GRU功率/风速预测 基于改进的自适应经验模态分解改进海洋捕食者算法门控循环单元时间序列预…

通过IP地址管理提升企业网络安全防御

在今天的数字时代&#xff0c;企业面临着越来越多的网络安全威胁。这些威胁可能来自各种来源&#xff0c;包括恶意软件、网络攻击和数据泄露。为了提高网络安全防御&#xff0c;企业需要采取一系列措施&#xff0c;其中IP地址管理是一个重要的方面 1. IP地址的基础知识 首先&a…

常见弯道输送机有哪些

提到弯道输送机您可能首先想到的就是弯道滚筒线&#xff0c;其实除了滚筒线之外&#xff0c;也有一些其他线体可以做弯道&#xff0c;下面就为您总结了4种常见的弯道输送机。 1、弯道皮带线&#xff1a;即线体转弯处设计成皮带输送机&#xff0c;这种形式的转弯设计可以实现不同…

【ElasticSearch】基于 Java 客户端 RestClient 实现对 ElasticSearch 索引库、文档的增删改查操作,以及文档的批量导入

文章目录 前言一、对 Java RestClient 的认识1.1 什么是 RestClient1.2 RestClient 核心类&#xff1a;RestHighLevelClient 二、使用 Java RestClient 操作索引库2.1 根据数据库表编写创建 ES 索引的 DSL 语句2.2 初始化 Java RestClient2.2.1 在 Spring Boot 项目中引入 Rest…