leetCode 1143.最长公共子序列 动态规划

1143. 最长公共子序列 - 力扣(LeetCode)

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace" ,它的长度为 3 。

示例 2:

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。

示例 3:

输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。

 >>思路和分析

本题和 leetCode 718.最长重复子数组 区别在于这里不要求是连续的了,但是要有相对顺序,即:"ace" 是 "abcde" 的子序列 ,但是 "aec" 不是 "abcde" 的子序列

>>动规五部曲

1.确定dp数组(dp table)以及下标的含义

dp[i][j] : 长度为 [0,i-1] 字符串 text1 与长度为 [0,j-1]字符串text2最长公共子序列为dp[i][j]

2.确定递推公式

思考:有哪些方向可以推出dp[i][j]

  • text1[i-1] == text[j-1]时,dp[i][j]=dp[i-1][j-1]+1
  • text1[i-1] != text[j-1]时,分两种情况讨论:
    • 情况①: 不看e了,考虑c,就是abc和ac。这两个原字符串的最长公共子序列也可能是abc和ac的最长公共子序列。因为c和e明显不相同,那么可不考虑e了
    • 情况②: 同理,也可以不看c了,考虑e,就是ab和ace。这两个字符串也可能是两个原字符串的最长公共子序列
    • 那么这两种情况应该怎么取呢?这两种情况都有可能是dp[i][j],那么
      • dp[i][j] = max(dp[i][j-1],dp[i-1][j]);
        • 情况①对应dp[i][j-1]
        • 情况②对应dp[i-1][j]
确定递推公式:
if(text1[i-1] == text2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
else dp[i][j] = max(dp[i-1][j],dp[i][j-1]);

3.dp数组初始化

  • dp[i][0] 应该初始化为0,因为 test1[0,i-1] 空串最长公共子序列是0
  • dp[0][j] 同理也为0
  • 其他下标都是随着递推公式逐步覆盖,初始为多少都可以

故统一初始为0,代码如下:

vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));

4.确定遍历顺序

那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后从上到下来遍历这个矩阵

5.举例推导dp数组

由上图可看到dp[text1.size()][text2.size()]为最终结果

class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[text1.size()][text2.size()];}
};
  • 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
  • 空间复杂度: O(n * m)

参考文章和视频:

动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列_哔哩哔哩_bilibili 代码随想录 (programmercarl.com)

来自代码随想录课堂截图:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/98077.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2021-06-09 51单片机:两个独立按键控制一个led,k1按下松开led闪烁三次,k2按下LED闪烁五次

缘由51单片机:两个独立按键控制一个led,k1按下松开led闪烁三次,k2按下LED闪烁五次_嵌入式-CSDN问答 #include "REG52.h" sbit K1 P1^0; sbit K2 P1^1; sbit LEDP0^0; void main() {unsigned char Xd0,ss0;unsigned int wei0;while(1){if(K10&&Xd0){ss3*2;…

Mysql存储-EAV模式

Mysql存储-EAV模式 最近又又又搞一点新东西&#xff0c;要整合不同业务进行存储和查询&#xff0c;一波学习过后总结了一下可扩展性MAX的eav模式存储。 在eav这里的数据结构设计尤为关键&#xff0c;需要充分考虑你需要使用的字段、使用场景&#xff0c;当数据结构设计完成后便…

单目标应用:猎豹优化算法(The Cheetah Optimizer,CO)求解微电网优化MATLAB

一、微网系统运行优化模型 微电网优化模型介绍&#xff1a; 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 二、猎豹优化算法CO 猎豹优化算法&#xff08;The Cheetah Optimizer&#xff0c;CO&#xff09;由MohammadAminAkbari等人于2022年提出&#xff0c;该算法性…

数字IC前端学习笔记:数字乘法器的优化设计(Dadda Tree乘法器)

相关阅读 数字IC前端https://blog.csdn.net/weixin_45791458/category_12173698.html?spm1001.2014.3001.5482 华莱士树仍然是一种比较规则的结构&#xff08;这使得可以方便地生成树的结构&#xff09;&#xff0c;这导致了它所使用的全加器和半加器个数不是最少的&#xff…

大数据概述(林子雨慕课课程)

文章目录 1. 大数据概述1.1 大数据概念和影响1.2 大数据的应用1.3 大数据的关键技术1.4 大数据与云计算和物联网的关系云计算物联网 1. 大数据概述 大数据的四大特点&#xff1a;大量化、快速化、多样化、价值密度低 1.1 大数据概念和影响 大数据摩尔定律 大数据由结构化和非…

C++简单上手helloworld 以及 vscode找不到文件的可能性原因

helloworld #include <iostream>int main() {std::cout << "hello world!" << std::endl;return 0; }输入输出小功能 #include <iostream> using namespace std; /* *主函数 *输出一条语句 */int main() {// 输出一条语句cout << &q…

智慧茶园:茶厂茶园监管可视化视频管理系统解决方案

一、方案背景 我国是茶叶生产大国&#xff0c;茶叶销量全世界第一。随着经济社会的发展和人民生活水平的提高&#xff0c;对健康、天然的茶叶产品的消费需求量也在逐步提高。茶叶的种植、生产和制作过程工序复杂&#xff0c;伴随着人力成本的上升&#xff0c;传统茶厂的运营及…

拉线位移编码器要检查机械装置的安装状态

拉线位移编码器要检查机械装置的安装状态 1、先要检查机械装置的安装状态&#xff0c;看看是不是机械故障的原因&#xff0c;这个原因是很简单的就可以去排除。 2、判别显示器是否有故障&#xff1a;用一台同类型不同量程的高准确度位移传感器当作标准信号发生器来测量。 3、…

【周末闲谈】“PHP是最好的语言”这个梗是怎么来的?

个人主页&#xff1a;【&#x1f60a;个人主页】 系列专栏&#xff1a;【❤️周末闲谈】 系列目录 ✨第一周 二进制VS三进制 ✨第二周 文心一言&#xff0c;模仿还是超越&#xff1f; ✨第二周 畅想AR 文章目录 系列目录前言最早的出处关于PHP语言优点缺点网络评价 总结 前言 …

如何快速制作令人惊叹的长图海报

在当今的数字时代&#xff0c;制作一张吸引人的长图海报已成为许多人的需求。无论是为了宣传活动&#xff0c;还是展示产品&#xff0c;一张设计精美的长图海报都能引起人们的注意。下面&#xff0c;我们将介绍一种简单的方法&#xff0c;使用在线海报制作工具来创建长图海报。…

线性数据—栈、队列、链表

一、栈 Stack&#xff08;存取O(1)&#xff09; 先进后出&#xff0c;进去123&#xff0c;出来321。 基于数组&#xff1a;最后一位为栈尾&#xff0c;用于取操作。 基于链表&#xff1a;第一位为栈尾&#xff0c;用于取操作。 1.1、数组栈 /*** 基于数组实现的顺序栈&#…

如何实现 Es 全文检索、高亮文本略缩处理

如何实现 Es 全文检索、高亮文本略缩处理 前言技术选型JAVA 常用语法说明全文检索开发高亮开发Es Map 转对象使用核心代码 Trans 接口&#xff08;支持父类属性的复杂映射&#xff09;Trans 接口的不足真实项目落地效果 前言 最近手上在做 Es 全文检索的需求&#xff0c;类似于…

电脑散热——液金散热

目录 1.简介 2.传统硅脂与液金导热区别 3.特点 4.优点 5.为什么液金技术名声不太好 6.使用方法 1.简介 凡是对于电脑基础硬件有所了解的人&#xff0c;都知道硅脂是如今高性能电脑设备中必不可少的东西。芯片表面和散热器接触面&#xff0c;虽然肉眼看上去是非常光滑的金属…

屏幕分辨率:PC / 手机 屏幕常见分辨率,前端如何适配分辨率

一、常见的PC屏幕分辨率 序号水平像素点数和垂直像素点数也被称为常见显示器11366 768720p 或 HD Ready常见于笔记本电脑和低端桌面显示器21920 10801080p 或 Full HD / 全高清高端笔记本电脑和中高档台式机32560 14402K 分辨率常见于高端笔记本电脑和高端台式机43840 216…

CSS3实现动画加载效果

<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>加载效果</title><link rel"style…

C++基础——基础语法

1 注释 C支持单行注释和多行注释。 单行注释 // 注释内容单行注释直到改行末尾&#xff0c;可以与代码放在同一行&#xff0c;在代码后面注释 多行注释 /* 注释内容 */包含在其中的都会被注释 2 变量 变量的作用是给指定的内存空间起名&#xff0c;方便操作这段内存。变…

开启AI大模型时代|「Transformer论文精读」

论文地址: https://arxiv.org/pdf/1706.03762v5.pdf 代码地址: https://github.com/tensorflow/tensor2tensor.git 首发&#xff1a;微信公众号「魔方AI空间」&#xff0c;欢迎关注&#xff5e; 大家好&#xff0c;我是魔方君~~ 近年来&#xff0c;人工智能技术发展迅猛&#…

你的librosa和scikit-learn打架了吗?

被这个问题困扰好久&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 我的原来版本librosa0.7.1 和 scikit-learn1.3.1 一直拆了按&#xff0c;按…

【UE5 Cesium】15-Cesium for Unreal 加载本地影像和地形

目录 一、加载全球无高度地形 二、加载区域DEM 三、加载离线地图影像 一、加载全球无高度地形 1. 先去如下网址下载全球无高度地形&#xff1a;Using a global terrain layer without height detail - #9 by RidhwanAziz - Cesium for Unreal - Cesium Community 下载后如下…

好物周刊#12:计算机考研资料

https://cunyu1943.github.io https://yuque.com/cunyu1943 村雨遥的好物周刊&#xff0c;记录每周看到的有价值的信息&#xff0c;主要针对计算机领域&#xff0c;每周五发布。 一、项目 1. JEECG BOOT 低代码开发平台 一款基于代码生成器的低代码开发平台&#xff01;前后…