AdaBoost(上):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️
🐴作者:秋无之地

🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。

🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、留言💬、关注🤝,关注必回关

上一篇文章已经跟大家介绍过《PageRank(下):数据分析 | 数据挖掘 | 十大算法之一》,相信大家对PageRank(下)都有一个基本的认识。下面我讲一下,AdaBoost(上):数据分析 | 数据挖掘 | 十大算法之一

一、AdaBoost背景

在数据挖掘中,分类算法可以说是核心算法,其中 AdaBoost 算法与随机森林算法一样都属于分类算法中的集成算法。

集成的含义就是集思广益,博取众长,当我们做决定的时候,我们先听取多个专家的意见,再做决定。集成算法通常有两种方式,分别是投票选举(bagging)和再学习(boosting)。投票选举的场景类似把专家召集到一个会议桌前,当做一个决定的时候,让 K 个专家(K 个模型)分别进行分类,然后选择出现次数最多的那个类作为最终的分类结果。再学习相当于把 K 个专家(K 个分类器)进行加权融合,形成一个新的超级专家(强分类器),让这个超级专家做判断。

所以你能看出来,投票选举和再学习还是有区别的。Boosting 的含义是提升,它的作用是每一次训练的时候都对上一次的训练进行改进提升,在训练的过程中这 K 个“专家”之间是有依赖性的,当引入第 K 个“专家”(第 K 个分类器)的时候,实际上是对前 K-1 个专家的优化。而 bagging 在做投票选举的时候可以并行计算,也就是 K 个“专家”在做判断的时候是相互独立的,不存在依赖性。

二、AdaBoost 的工作原理

了解了集成算法的两种模式之后,我们来看下今天要讲的 AdaBoost 算法。

AdaBoost 的英文全称是 Adaptive Boosting,中文含义是自适应提升算法。它由 Freund 等人于 1995 年提出,是对 Boosting 算法的一种实现。

什么是 Boosting 算法呢?Boosting 算法是集成算法中的一种,同时也是一类算法的总称。这类算法通过训练多个弱分类器,将它们组合成一个强分类器,也就是我们俗话说的“三个臭皮匠,顶个诸葛亮”。为什么要这么做呢?因为臭皮匠好训练,诸葛亮却不好求。因此要打造一个诸葛亮,最好的方式就是训练多个臭皮匠,然后让这些臭皮匠组合起来,这样往往可以得到很好的效果。这就是 Boosting 算法的原理。

我可以用上面的图来表示最终得到的强分类器,你能看出它是通过一系列的弱分类器根据不同的权重组合而成的。

假设弱分类器为 Gi​(x),它在强分类器中的权重 αi​,那么就可以得出强分类器 f(x):

有了这个公式,为了求解强分类器,你会关注两个问题:

  1. 如何得到弱分类器,也就是在每次迭代训练的过程中,如何得到最优弱分类器?
  2. 每个弱分类器在强分类器中的权重是如何计算的?

我们先来看下第二个问题。实际上在一个由 K 个弱分类器中组成的强分类器中,如果弱分类器的分类效果好,那么权重应该比较大,如果弱分类器的分类效果一般,权重应该降低。所以我们需要基于这个弱分类器对样本的分类错误率来决定它的权重,用公式表示就是:

其中 ei​ 代表第 i 个分类器的分类错误率。

然后我们再来看下第一个问题,如何在每次训练迭代的过程中选择最优的弱分类器?

实际上,AdaBoost 算法是通过改变样本的数据分布来实现的。AdaBoost 会判断每次训练的样本是否正确分类,对于正确分类的样本,降低它的权重,对于被错误分类的样本,增加它的权重。再基于上一次得到的分类准确率,来确定这次训练样本中每个样本的权重。然后将修改过权重的新数据集传递给下一层的分类器进行训练。这样做的好处就是,通过每一轮训练样本的动态权重,可以让训练的焦点集中到难分类的样本上,最终得到的弱分类器的组合更容易得到更高的分类准确率。

我们可以用 Dk+1​ 代表第 k+1 轮训练中,样本的权重集合,其中 Wk+1,1​ 代表第 k+1 轮中第一个样本的权重,以此类推 Wk+1,N​ 代表第 k+1 轮中第 N 个样本的权重,因此用公式表示为:

第 k+1 轮中的样本权重,是根据该样本在第 k 轮的权重以及第 k 个分类器的准确率而定,具体的公式为:

三、AdaBoost 算法示例

了解 AdaBoost 的工作原理之后,我们看一个例子,假设我有 10 个训练样本,如下所示:

现在我希望通过 AdaBoost 构建一个强分类器。

该怎么做呢?按照上面的 AdaBoost 工作原理,我们来模拟一下。

首先在第一轮训练中,我们得到 10 个样本的权重为 1/10,即初始的 10 个样本权重一致,D1=(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)。

假设我有 3 个基础分类器:

我们可以知道分类器 f1 的错误率为 0.3,也就是 x 取值 6、7、8 时分类错误;分类器 f2 的错误率为 0.4,即 x 取值 0、1、2、9 时分类错误;分类器 f3 的错误率为 0.3,即 x 取值为 3、4、5 时分类错误。

这 3 个分类器中,f1、f3 分类器的错误率最低,因此我们选择 f1 或 f3 作为最优分类器,假设我们选 f1 分类器作为最优分类器,即第一轮训练得到:

根据分类器权重公式得到:

然后我们对下一轮的样本更新求权重值,代入 Wk+1,i​ 和 Dk+1​ 的公式,可以得到新的权重矩阵:D2=(0.0715, 0.0715, 0.0715, 0.0715, 0.0715, 0.0715, 0.1666, 0.1666, 0.1666, 0.0715)。

在第二轮训练中,我们继续统计三个分类器的准确率,可以得到分类器 f1 的错误率为 0.1666*3,也就是 x 取值为 6、7、8 时分类错误。分类器 f2 的错误率为 0.0715*4,即 x 取值为 0、1、2、9 时分类错误。分类器 f3 的错误率为 0.0715*3,即 x 取值 3、4、5 时分类错误。

在这 3 个分类器中,f3 分类器的错误率最低,因此我们选择 f3 作为第二轮训练的最优分类器,即:

根据分类器权重公式得到:

同样,我们对下一轮的样本更新求权重值,代入 Wk+1,i​ 和 Dk+1​ 的公式,可以得到 D3=(0.0455,0.0455,0.0455,0.1667, 0.1667,0.01667,0.1060, 0.1060, 0.1060, 0.0455)。

在第三轮训练中,我们继续统计三个分类器的准确率,可以得到分类器 f1 的错误率为 0.1060*3,也就是 x 取值 6、7、8 时分类错误。分类器 f2 的错误率为 0.0455*4,即 x 取值为 0、1、2、9 时分类错误。分类器 f3 的错误率为 0.1667*3,即 x 取值 3、4、5 时分类错误。

在这 3 个分类器中,f2 分类器的错误率最低,因此我们选择 f2 作为第三轮训练的最优分类器,即:

我们根据分类器权重公式得到:

假设我们只进行 3 轮的训练,选择 3 个弱分类器,组合成一个强分类器,那么最终的强分类器 G(x) = 0.4236G1(x) + 0.6496G2(x)+0.7514G3(x)。

实际上 AdaBoost 算法是一个框架,你可以指定任意的分类器,通常我们可以采用 CART 分类器作为弱分类器。通过上面这个示例的运算,你体会一下 AdaBoost 的计算流程即可。

四、总结

今天我给你讲了 AdaBoost 算法的原理,你可以把它理解为一种集成算法,通过训练不同的弱分类器,将这些弱分类器集成起来形成一个强分类器。在每一轮的训练中都会加入一个新的弱分类器,直到达到足够低的错误率或者达到指定的最大迭代次数为止。实际上每一次迭代都会引入一个新的弱分类器(这个分类器是每一次迭代中计算出来的,是新的分类器,不是事先准备好的)。

在弱分类器的集合中,你不必担心弱分类器太弱了。实际上它只需要比随机猜测的效果略好一些即可。如果随机猜测的准确率是 50% 的话,那么每个弱分类器的准确率只要大于 50% 就可用。AdaBoost 的强大在于迭代训练的机制,这样通过 K 个“臭皮匠”的组合也可以得到一个“诸葛亮”(强分类器)。

当然在每一轮的训练中,我们都需要从众多“臭皮匠”中选择一个拔尖的,也就是这一轮训练评比中的最优“臭皮匠”,对应的就是错误率最低的分类器。当然每一轮的样本的权重都会发生变化,这样做的目的是为了让之前错误分类的样本得到更多概率的重复训练机会。

同样的原理在我们的学习生活中也经常出现,比如善于利用错题本来提升学习效率和学习成绩。

版权声明

本文章版权归作者所有,未经作者允许禁止任何转载、采集,作者保留一切追究的权利。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/96630.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Zookeeper经典应用场景实战(二)

文章目录 1、 Zookeeper 分布式锁实战1.1、 什么是分布式锁1.2、 基于数据库设计思路1.3、 基于Zookeeper设计思路一1.4、 基于Zookeeper设计思路二 1、 Zookeeper 分布式锁实战 1.1、 什么是分布式锁 在单体的应用开发场景中涉及并发同步的时候,大家往往采用Sync…

DRM全解析 —— CRTC详解(1)

本文参考以下博文: Linux内核4.14版本——drm框架分析(4)——crtc分析 特此致谢! 1. 简介 CRTC实际上可以拆分为CRTC。CRT的中文意思是阴极摄像管,就是当初老电视上普遍使用的显像管(老电视之所以都很厚,就是因为它…

【状态估计】将变压器和LSTM与卡尔曼滤波器结合到EM算法中进行状态估计(Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

人机言语交互模型的评估要素

智能客服中的言语交互模型评估要素,主要包括以下几个方面: 有效性:指模型能否准确识别和理解用户的言语意图,以及生成正确和合适的回答。可以通过比较模型生成的回答与人工回答的准确率来评估。流畅性:指模型在回答问…

【单调栈】下一个更大元素 II

文章目录 Tag题目来源题目解读解题思路方法一:单调栈循环数组 写在最后 Tag 【单调栈循环数组】【数组】 题目来源 503. 下一个更大元素 II 题目解读 在循环数组中找下一个更大的元素。循环数组指的是,数组的最后一个元素的下一个元素是数组首元素。 …

C语言之动态内存管理篇(1)

目录 为什么存在动态内存分配 动态内存函数的介绍 malloc free calloc realloc 常见的动态内存错误 今天收假了,抓紧时间写几篇博客。我又来赶进度了。今天我们来讲解动态内存管理。🆗🆗 为什么存在动态内存分配 假设我们去实现一个…

Excel插件:StatPlus Pro 7.7.0 Crack

Windows 版 StatPlus 借助 StatPlus,人们可以获得一套强大的统计工具和图形分析方法,可以通过简单直观的界面轻松访问。StatPlus 的可能应用范围几乎是无限的 - 社会学、金融分析、生物统计学、经济学、保险业、医疗保健和临床研究 - 仅举几个该程序已被…

SignalIR入门

SignalIR入门 简介教程1.创建项目2.添加 SignalR 客户端库3.创建 SignalR 中心4.配置 SignalR5.添加 SignalR 客户端代码 效果 简介 SignalR 是一个用于构建实时 Web 应用程序的开发工具和库,它可以让服务器端代码与客户端代码之间建立双向通信。SignalR 的中文解释…

什么测试自动化测试?

什么测试自动化测试? 做测试好几年了,真正学习和实践自动化测试一年,自我感觉这一个年中收获许多。一直想动笔写一篇文章分享自动化测试实践中的一些经验。终于决定花点时间来做这件事儿。 首先理清自动化测试的概念,广义上来讲&a…

如何搭建一个 websocket

环境: NodeJssocket.io 4.7.2 安装依赖 yarn add socket.io创建服务器 引入文件 特别注意: 涉及到 colors 的代码,请采取 console.log() 打印 // 基础老三样 import http from "http"; import fs from "fs"; import { Server } from &quo…

第九课 排序

文章目录 第九课 排序排序算法lc912.排序数组--中等题目描述代码展示 lc1122.数组的相对排序--简单题目描述代码展示 lc56.合并区间--中等题目描述代码展示 lc215.数组中的第k个最大元素--中等题目描述代码展示 acwing104.货仓选址--简单题目描述代码展示 lc493.翻转树--困难题…

JavaScript系列从入门到精通系列第十五篇:JavaScript中函数的实参介绍返回值介绍以及函数的立即执行

文章目录 一:函数的参数 1:形参如何定义 2:形参的使用规则 二:函数的返回值 1:函数返回值如何定义 2:函数返回值种类 三:实参的任意性 1:方法可以作为实参 2:将匿…

【Spring Boot】创建一个 Spring Boot 项目

创建一个 Spring Boot 项目 1. 安装插件2. 创建 Spring Boot 项目3. 项目目录介绍和运行注意事项 1. 安装插件 IDEA 中安装 Spring Boot Helper / Spring Assistant / Spring Initializr and Assistant插件才能创建 Spring Boot 项⽬ (有时候不用安装,直…

【排序算法】冒泡排序

文章目录 一:排序算法1.1 介绍1.2 分类 二:冒泡排序2.1 基本介绍2.2 图解冒泡排序算法2.3 代码实现 三:算法性能分析3.1 时间复杂度3.2 空间复杂度 一:排序算法 1.1 介绍 排序也称排序算法(Sort Algorithm),排序是将…

SpringCloud-消息组件

1 简介 了解过RabbitMQ后,可能我们会遇到不同的系统在用不同的队列。比如系统A用的Kafka,系统B用的RabbitMQ,但是没了解过Kafka,因此可以使用Spring Stream,它能够屏蔽地产,像JDBC一样,只关心SQ…

C# 给某个方法设定执行超时时间

C# 给某个方法设定执行超时时间在某些情况下(例如通过网络访问数据),常常不希望程序卡住而占用太多时间以至于造成界面假死。 在这时、我们可以通过Thread、Thread Invoke(UI)或者是 delegate.BeginInvoke 来避免界面假死, 但是…

el-table进阶(每条数据分行或合并)

最麻烦的还是css样式&#xff0c;表格样式自己调吧 <!-- ——————————————————————————————————根据数据拓展表格—————————————————————————————————— --> <div style"display: flex"&…

oralce配置访问白名单的方法

目录 配置sqlnet.ora文件 重新加载使配置生效 注意事项 Oracle数据库安全性提升&#xff1a;IP白名单的配置方法 随着互联网的发展&#xff0c;数据库安全问题也越来越严重。Oracle是目前使用较为广泛的一款数据库管理系统&#xff0c;而IP白名单作为提升数据库安全性的有效…

深度学习——权重衰减(weight_decay)

深度学习——权重衰减&#xff08;weight_decay) 文章目录 前言一、权重衰减1.1. 范数与权重衰减1.2. 高维线性回归1.3. 从零开始实现1.3.1.初始化模型参数1.3.2. 定义L₂范数惩罚1.3.3. 定义训练代码实现1.3.4. 不管正则化直接训练1.3.5. 使用权重衰减 1.4. 简洁实现 总结 前言…

vue 项目打包性能分析插件 webpack-bundle-analyzer

webpack-bundle-analyzer 是 webpack 的插件&#xff0c;需要配合 webpack 和 webpack-cli 一起使用。这个插件可以读取输出文件夹&#xff08;通常是 dist&#xff09;中的 stats.json 文件&#xff0c;把该文件可视化展现&#xff0c;生成代码分析报告&#xff0c;可以直观地…