最强中间件!Kafka快速入门(Kafka理论+SpringBoot集成Kafka实践)

自媒体文章上下架

需求分析

image-20230218210826439

媒体端下架文章同时app端也下架文章的实现可以通过feign去调用,但这种实现耦合度太高,这里使用MQ进行解耦

自媒体端一旦上下架文章就发送消息给MQ,文章微服务在去读取消息根据消息内容上下架文章

MQ还可以流量削峰,比如文章的点赞量,评论短时间可能会很多,使用MQ就可以对流量进行很好的控制

image-20230217222318314

kafka概述

消息中间件对比

特性ActiveMQRabbitMQRocketMQKafka
开发语言javaerlangjavascala
单机吞吐量万级万级10万级100万级
时效性msusmsms级以内
可用性高(主从)高(主从)非常高(分布式)非常高(分布式)
功能特性成熟的产品、较全的文档、各种协议支持好并发能力强、性能好、延迟低MQ功能比较完善,扩展性佳只支持主要的MQ功能,主要应用于大数据领域

消息中间件对比-选择建议

消息中间件建议
Kafka追求高吞吐量,适合产生大量数据的互联网服务的数据收集业务
RocketMQ可靠性要求很高的金融互联网领域,稳定性高,经历了多次阿里双11考验
RabbitMQ性能较好,社区活跃度高,数据量没有那么大,优先选择功能比较完备的RabbitMQ

kafka介绍

Kafka 是一个分布式流媒体平台,类似于消息队列或企业消息传递系统。kafka官网:http://kafka.apache.org/

image-20230218210955518

kafka介绍-名词解释

image-20230218211009327

  • producer:发布消息的对象称之为主题生产者(Kafka topic producer)

  • topic:Kafka将消息分门别类,每一类的消息称之为一个主题(Topic)

  • consumer:订阅消息并处理发布的消息的对象称之为主题消费者(consumers)

  • broker:已发布的消息保存在一组服务器中,称之为Kafka集群。集群中的每一个服务器都是一个代理(Broker)。 消费者可以订阅一个或多个主题(topic),并从Broker拉数据,从而消费这些已发布的消息。

kafka安装配置

Mac上安装也是一样,我对原笔记已更改为Mac使用版本

Kafka对于zookeeper是强依赖,保存kafka相关的节点数据,所以安装Kafka之前必须先安装zookeeper

  • Docker安装zookeeper
docker run -d --name zookeeper -p 2181:2181 wurstmeister/zookeeper
  • Docker安装kafka
docker run -d --name kafka -p 9092:9092 -e KAFKA_BROKER_ID=0 -e KAFKA_ZOOKEEPER_CONNECT=192.168.1.5:2181 -e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.1.5:9092 -e KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 -t wurstmeister/kafka

kafka入门

(1)创建kafka-demo项目,导入依赖

<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId>
</dependency>

(2)生产者发送消息

package com.heima.kafka.sample;import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;import java.util.Properties;/*** 生产者*/
public class ProducerQuickStart {public static void main(String[] args) {//1.kafka的配置信息Properties properties = new Properties();//kafka的连接地址properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"172.20.10.2:9092");//发送失败,失败的重试次数properties.put(ProducerConfig.RETRIES_CONFIG,5);//消息key的序列化器properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");//消息value的序列化器properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");//2.生产者对象KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);//封装发送的消息ProducerRecord<String,String> record = new ProducerRecord<String, String>("itheima-topic","100001","hello kafka");//3.发送消息producer.send(record);//4.关闭消息通道,必须关闭,否则消息发送不成功producer.close();}}

(3)消费者接收消息

package com.heima.kafka.sample;import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;import java.time.Duration;
import java.util.Collections;
import java.util.Properties;/*** 消费者*/
public class ConsumerQuickStart {public static void main(String[] args) {//1.添加kafka的配置信息Properties properties = new Properties();//kafka的连接地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "172.20.10.2:9092");//消费者组properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");//消息的反序列化器properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");//2.消费者对象KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);//3.订阅主题consumer.subscribe(Collections.singletonList("itheima-topic"));//当前线程一直处于监听状态while (true) {//4.获取消息ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord.key());System.out.println(consumerRecord.value());}}}
}
  • 生产者发送消息,多个消费者只能有一个消费者接收到消息(多个消费者订阅同一个主题,只能有一个消费者收到消息)

image-20230218211553093

  • 生产者发送消息,多个消费者都可以接收到消息(消费者组)

image-20230218211601163

kafka高可用设计

集群

image-20230218211703302

  • Kafka 的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个 Broker 组成
  • 这样如果集群中某一台机器宕机,其他机器上的 Broker 也依然能够对外提供服务。这其实就是 Kafka 提供高可用的手段之一
备份机制(Replication)

image-20230218211730646

Kafka 中消息的备份又叫做 副本(Replica)

Kafka 定义了两类副本:

  • 领导者副本(Leader Replica)

  • 追随者副本(Follower Replica)

同步方式

image-20230218211843076

ISR(in-sync replica)需要同步复制保存的follower

如果leader失效后,需要选出新的leader,选举的原则如下:

第一:选举时优先从ISR中选定,因为这个列表中follower的数据是与leader同步的

第二:如果ISR列表中的follower都不行了,就只能从其他follower中选取

极端情况,就是所有副本都失效了,这时有两种方案

第一:等待ISR中的一个活过来,选为Leader,数据可靠,但活过来的时间不确定

第二:选择第一个活过来的Replication,不一定是ISR中的,选为leader,以最快速度恢复可用性,但数据不一定完整

kafka生产者详解

发送类型
  • 同步发送

    使用send()方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功

RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
System.out.println(recordMetadata.offset());
  • 异步发送

    调用send()方法,并指定一个回调函数,服务器在返回响应时调用函数

//异步消息发送
producer.send(kvProducerRecord, new Callback() {@Overridepublic void onCompletion(RecordMetadata recordMetadata, Exception e) {if(e != null){System.out.println("记录异常信息到日志表中");}System.out.println(recordMetadata.offset());}
});
参数详解
  • ack

image-20230218212046652

代码的配置方式:

//ack配置  消息确认机制
prop.put(ProducerConfig.ACKS_CONFIG,"all");

参数的选择说明

确认机制说明
acks=0生产者在成功写入消息之前不会等待任何来自服务器的响应,消息有丢失的风险,但是速度最快
acks=1(默认值)只要集群首领节点收到消息,生产者就会收到一个来自服务器的成功响应
acks=all只有当所有参与赋值的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应
  • retries

image-20230218212057424

生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms

代码中配置方式:

//重试次数
prop.put(ProducerConfig.RETRIES_CONFIG,10);
  • 消息压缩

默认情况下, 消息发送时不会被压缩。

代码中配置方式:

//数据压缩
prop.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");
压缩算法说明
snappy占用较少的 CPU, 却能提供较好的性能和相当可观的压缩比, 如果看重性能和网络带宽,建议采用
lz4占用较少的 CPU, 压缩和解压缩速度较快,压缩比也很客观
gzip占用较多的 CPU,但会提供更高的压缩比,网络带宽有限,可以使用这种算法

使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。

kafka消费者详解

消费者组

image-20230218212202507

  • 消费者组(Consumer Group) :指的就是由一个或多个消费者组成的群体

  • 一个发布在Topic上消息被分发给此消费者组中的一个消费者

    • 所有的消费者都在一个组中,那么这就变成了queue模型

    • 所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型

消息有序性

应用场景:

  • 即时消息中的单对单聊天和群聊,保证发送方消息发送顺序与接收方的顺序一致

  • 充值转账两个渠道在同一个时间进行余额变更,短信通知必须要有顺序

image-20230218212257551

topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理Topic的所有消息,那就只提供一个分区。

提交和偏移量

kafka不会像其他JMS队列那样需要得到消费者的确认,消费者可以使用kafka来追踪消息在分区的位置(偏移量)

消费者会往一个叫做_consumer_offset的特殊主题发送消息,消息里包含了每个分区的偏移量。如果消费者发生崩溃或有新的消费者加入群组,就会触发再均衡

image-20230218212311057

正常的情况

image-20230218212323297

如果消费者2挂掉以后,会发生再均衡,消费者2负责的分区会被其他消费者进行消费

再均衡后不可避免会出现一些问题

问题一:

image-20230218212334471

如果提交偏移量小于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息就会被重复处理。

问题二:

image-20230218212347844

如果提交的偏移量大于客户端的最后一个消息的偏移量,那么处于两个偏移量之间的消息将会丢失。

如果想要解决这些问题,还要知道目前kafka提交偏移量的方式:

提交偏移量的方式有两种,分别是自动提交偏移量和手动提交

  • 自动提交偏移量

当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll()方法接收的最大偏移量提交上去

  • 手动提交 ,当enable.auto.commit被设置为false可以有以下三种提交方式

    • 提交当前偏移量(同步提交)

    • 异步提交

    • 同步和异步组合提交

1.提交当前偏移量(同步提交)

enable.auto.commit设置为false,让应用程序决定何时提交偏移量。使用commitSync()提交偏移量,commitSync()将会提交poll返回的最新的偏移量,所以在处理完所有记录后要确保调用了commitSync()方法。否则还是会有消息丢失的风险。

只要没有发生不可恢复的错误,commitSync()方法会一直尝试直至提交成功,如果提交失败也可以记录到错误日志里。

while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());try {consumer.commitSync();//同步提交当前最新的偏移量}catch (CommitFailedException e){System.out.println("记录提交失败的异常:"+e);}}
}

2.异步提交

手动提交有一个缺点,那就是当发起提交调用时应用会阻塞。当然我们可以减少手动提交的频率,但这个会增加消息重复的概率(和自动提交一样)。另外一个解决办法是,使用异步提交的API。

while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());}consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {if(e!=null){System.out.println("记录错误的提交偏移量:"+ map+",异常信息"+e);}}});
}

3.同步和异步组合提交

异步提交也有个缺点,那就是如果服务器返回提交失败,异步提交不会进行重试。相比较起来,同步提交会进行重试直到成功或者最后抛出异常给应用。异步提交没有实现重试是因为,如果同时存在多个异步提交,进行重试可能会导致位移覆盖。

举个例子,假如我们发起了一个异步提交commitA,此时的提交位移为2000,随后又发起了一个异步提交commitB且位移为3000;commitA提交失败但commitB提交成功,此时commitA进行重试并成功的话,会将实际上将已经提交的位移从3000回滚到2000,导致消息重复消费。

try {while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());}consumer.commitAsync();}
}catch (Exception e){+e.printStackTrace();System.out.println("记录错误信息:"+e);
}finally {try {consumer.commitSync();}finally {consumer.close();}
}

springboot集成kafka

入门

1.导入spring-kafka依赖信息

<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!-- kafkfa --><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId><exclusions><exclusion><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></exclusion></exclusions></dependency><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId></dependency>
</dependencies>

2.在resources下创建文件application.yml

server:port: 9991
spring:application:name: kafka-demokafka:bootstrap-servers: 172.20.10.2:9092producer:retries: 10key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializerconsumer:group-id: ${spring.application.name}-testkey-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializer

3.消息生产者

package com.heima.kafka.controller;import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;@RestController
public class HelloController {@Autowiredprivate KafkaTemplate<String,String> kafkaTemplate;@GetMapping("/hello")public String hello(){kafkaTemplate.send("itcast-topic","黑马程序员");return "ok";}
}

4.消息消费者

package com.heima.kafka.listener;import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;@Component
public class HelloListener {@KafkaListener(topics = "itcast-topic")public void onMessage(String message){if(!StringUtils.isEmpty(message)){System.out.println(message);}}
}
传递消息为对象

目前springboot整合后的kafka,因为序列化器是StringSerializer,这个时候如果需要传递对象可以有两种方式

方式一:可以自定义序列化器,对象类型众多,这种方式通用性不强,本章节不介绍

方式二:可以把要传递的对象进行转json字符串,接收消息后再转为对象即可,本项目采用这种方式

  • 发送消息
@GetMapping("/hello")
public String hello(){User user = new User();user.setUsername("xiaowang");user.setAge(18);kafkaTemplate.send("user-topic", JSON.toJSONString(user));return "ok";
}
  • 接收消息
package com.heima.kafka.listener;import com.alibaba.fastjson.JSON;
import com.heima.kafka.pojo.User;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;@Component
public class HelloListener {@KafkaListener(topics = "user-topic")public void onMessage(String message){if(!StringUtils.isEmpty(message)){User user = JSON.parseObject(message, User.class);System.out.println(user);}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/95931.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

windows server 2012 服务器打开系统远程功能

服务器上开启远程功能 进入服务器&#xff0c;选择“添加角色和功能” 需要选择安装的服务器类型&#xff0c;如图所示 然后在服务器池中选择你需要使用的服务器。 选择完成后&#xff0c;在图示列表下勾选“远程桌面服务” 再选择需要安装的功能和角色服务。 选择完成确认内容…

CTFHUB - SSRF

目录 SSRF漏洞 攻击对象 攻击形式 产生漏洞的函数 file_get_contents() fsockopen() curl_exec() 提高危害 利用的伪协议 file dict gopher 内网访问 伪协议读取文件 端口扫描 POST请求 总结 上传文件 总结 FastCGI协议 CGI和FastCGI的区别 FastCGI协议 …

MyBatis-plus使用

1 基础介绍 MyBatis-Plus (opens new window)&#xff08;简称 MP&#xff09;是一个 MyBatis (opens new window)的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。 它已经封装好了一些crud方法&#xff0c;我们不需要再写…

Leetcode hot 100之双指针(快慢指针、滑动窗口)

目录 数组 有序的平方仍有序 删除/覆盖元素 移动零&#xff1a;交换slow和fast 滑动窗口&#xff1a;最短的连续子串&#xff08;r可行解->l--最短解&#xff09; 最小长度的子数组 求和&#xff1a;sort、l i 1, r len - 1 三数之和abctarget 四数之和abcdtarg…

VUE3照本宣科——package.json与vite.config.js

VUE3照本宣科——package.json与vite.config.js VUE3照本宣科系列导航 前言一、package.json1.name2.version3.private4.scripts5.dependencies6.devDependencies 二、vite.config.js1.plugins2.resolve.alias3.base4.mode 三、VUE3照本宣科系列总结 VUE3照本宣科系列导航 1.VU…

大数据Doris(五):开始编译 Doris

文章目录 开始编译 Doris 一、下载Doris的安装包 二、解压缩 三、上传配置文件

嵌入式操作系统服务机制

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。搜…

三一充填泵:煤矿矸石无害化充填,煤炭绿色高效开采的破局利器

富煤贫油少气是我国的能源禀赋特征&#xff0c;决定了我国以煤炭为主的能源结构&#xff0c;煤炭为国民经济发展提供了重要的基础。煤炭开采过程会对土地、地下水、空气等环境造成较大的污染&#xff0c;但大宗固废煤矸石无害化充填的技术手段可以有效改善这样的情况&#xff0…

【Linux】线程详解完结篇——信号量 + 线程池 + 单例模式 + 读写锁

线程详解第四篇 前言正式开始信号量引例信号量的本质信号量相关的四个核心接口生产消费者模型用环形队列实现生产者消费者模型基于环形队列的生产消费模型的原理代码演示单生产者单消费者多生产者多消费者 计数器的意义 线程池基本概念代码 单例模式STL,智能指针和线程安全STL中…

【JavaEE】_构造HTTP请求与HTTPS

目录 1. 构造HTTP请求 1.1 form标签构造HTTP请求 1.1.1 form标签构造GET请求 1.1.2 form标签构造POST请求 1.2 通过ajax构造HTTP请求 1.3 form与ajax 1.4 使用ajax构造HTTP请求 2.HTTPS 2.1 对称加密 2.2 非对称加密 2.3 证书 1. 构造HTTP请求 1.1 form标签构造HTT…

NPDP产品经理知识(产品创新种的市场调研)

1. 复习产品设计与开发工具 创意生成&#xff1a; scamper也叫蹦蹦法 心智图就是思维导图&#xff1a;mindmaping 原型法--故事板&#xff1a;创意生成的时候做的 人种学--民族志 六顶思考帽&#xff1a;白色红色黑色蓝色。。。 概念设计&#xff1a; AOMI&#xff1a;卡…

Hive【Hive(六)窗口函数】

窗口函数&#xff08;window functions&#xff09; 概述 定义 窗口函数能够为每行数据划分 一个窗口&#xff0c;然后对窗口范围内的数据进行计算&#xff0c;最后将计算结果返回给该行数据。 语法 窗口函数的语法主要包括 窗口 和 函数 两个部分。其中窗口用于定义计算范围…

最全MacBook选购指南 | 看完你就知道怎么买

最全MacBook选购指南 | 看完你就知道怎么买 作为MacBook的老用户大大小小的型号也都用了不少 那这么多台MacBook到底怎么选呢&#x1f4a1; . ☑️M1和Intel的MacBook有什么差别呢&#xff1f; 下半年苹果发布的两款MacBook都是苹果自研的芯片M1。在此之前苹果一直用的都是Inte…

ESP32设备驱动-I2C-LCD1602显示屏驱动

I2C-LCD1602显示屏驱动 1、LCD1602介绍 LCD1602液晶显示器是广泛使用的一种字符型液晶显示模块。它是由字符型液晶显示屏(LCD)、控制驱动主电路HD44780及其扩展驱动电路HD44100,以及少量电阻、电容元件和结构件等装配在PCB板上而组成。 通过前面的实例我们知道,并口方式…

asp.net班级管理系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net班级管理系统 是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用c#语言开发 asp.net班级管理系统 二、功能介绍 1…

国庆作业 day 2

select实现服务器并发 #include<myhead.h> #define ERR_MSG(msg) do{\fprintf(stderr, "__%d__:", __LINE__); \perror(msg);\ }while(0)#define PORT 8888 //端口号&#xff0c;范围1024~49151 #define IP "192.168.0.103" //本…

c++运算符重载实现

#include <iostream> #include <cstring> using namespace std; class myString { private:char *str;int size; public://无参构造myString():size(10){str new char[size]; //构造出一个长度为10的字符串strcpy(str,""); //赋值为空串}//有…

基于transformer的心脑血管心脏病疾病预测

视频讲解:基于transformer的心脑血管疾病预测 完整数据代码分享_哔哩哔哩_bilibili 数据展示: 完整代码: # pip install openpyxl -i https://pypi.tuna.tsinghua.edu.cn/simple/ # pip install optuna -i https://pypi.tuna.tsinghua.edu.cn/simple/ import numpy as np …

硬件知识:U盘相关知识介绍,值得收藏

目录 什么是U盘&#xff1f; U盘根据结构有哪几种&#xff1f; 根据U盘的存储介质、外形、功能分类有哪几种&#xff1f; 什么是U盘&#xff1f; U盘&#xff0c;全称为USB闪存盘&#xff0c;是一种以闪存芯片作为数据存储介质的移动存储设备。U盘的历史可以追溯到1998年&am…

优化方法的应用(optimtool.example)

import optimtool as oo from optimtool.base import np, sp, pltpip install optimtool>2.4.2优化方法的应用&#xff08;optimtool.example&#xff09; import optimtool.example as oeLasso问题&#xff08;Lasso&#xff09; oe.Lasso.[函数名]([矩阵A], [矩阵b], [因…