二叉树题目:路径总和 II

文章目录

  • 题目
    • 标题和出处
    • 难度
    • 题目描述
      • 要求
      • 示例
      • 数据范围
  • 前言
  • 解法一
    • 思路和算法
    • 代码
    • 复杂度分析
  • 解法二
    • 思路和算法
    • 代码
    • 复杂度分析

题目

标题和出处

标题:路径总和 II

出处:113. 路径总和 II

难度

4 级

题目描述

要求

给你二叉树的根结点 root \texttt{root} root 和一个表示目标和的整数 targetSum \texttt{targetSum} targetSum,返回所有的满足路径上结点值总和等于目标和 targetSum \texttt{targetSum} targetSum从根结点到叶结点的路径。每条路径应该以结点值列表的形式返回,而不是结点的引用。

示例

示例 1:

示例 1

输入: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22 \texttt{root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22} root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出: [[5,4,11,2],[5,8,4,5]] \texttt{[[5,4,11,2],[5,8,4,5]]} [[5,4,11,2],[5,8,4,5]]
解释:有两条路径的结点值总和等于 targetSum \texttt{targetSum} targetSum
5 + 4 + 11 + 2 = 22 \texttt{5 + 4 + 11 + 2 = 22} 5 + 4 + 11 + 2 = 22
5 + 8 + 4 + 5 = 22 \texttt{5 + 8 + 4 + 5 = 22} 5 + 8 + 4 + 5 = 22

示例 2:

示例 2

输入: root = [1,2,3], targetSum = 5 \texttt{root = [1,2,3], targetSum = 5} root = [1,2,3], targetSum = 5
输出: [] \texttt{[]} []

示例 3:

输入: root = [1,2], targetSum = 0 \texttt{root = [1,2], targetSum = 0} root = [1,2], targetSum = 0
输出: [] \texttt{[]} []

数据范围

  • 树中结点数目在范围 [0, 5000] \texttt{[0, 5000]} [0, 5000]
  • -1000 ≤ Node.val ≤ 1000 \texttt{-1000} \le \texttt{Node.val} \le \texttt{1000} -1000Node.val1000
  • -1000 ≤ targetSum ≤ 1000 \texttt{-1000} \le \texttt{targetSum} \le \texttt{1000} -1000targetSum1000

前言

这道题是「路径总和」的进阶,要求返回所有的结点值总和等于目标和的从根结点到叶结点的路径。这道题也可以使用深度优先搜索和广度优先搜索得到答案,在搜索过程中需要维护路径。

解法一

思路和算法

如果二叉树为空,则不存在结点值总和等于目标和的路径。只有当二叉树不为空时,才可能存在结点值总和等于目标和的路径,需要从根结点开始寻找路径。

从根结点开始深度优先搜索,在遍历每一个结点的同时需要维护从根结点到当前结点的路径以及剩余目标和,将原目标和减去当前结点值即可得到剩余目标和。当访问到叶结点时,如果剩余目标和为 0 0 0,则从根结点到当前叶结点的路径即为结点值总和等于目标和的路径,将该路径添加到结果列表中。

由于深度优先搜索过程中维护的路径会随着访问到的结点而变化,因此当找到结点值总和等于目标和的路径时,需要新建一个路径对象添加到结果列表中,避免后续搜索过程中路径变化对结果造成影响。

代码

class Solution {List<List<Integer>> paths = new ArrayList<List<Integer>>();List<Integer> path = new ArrayList<Integer>();public List<List<Integer>> pathSum(TreeNode root, int targetSum) {dfs(root, targetSum);return paths;}public void dfs(TreeNode node, int targetSum) {if (node == null) {return;}path.add(node.val);targetSum -= node.val;if (node.left == null && node.right == null && targetSum == 0) {paths.add(new ArrayList<Integer>(path));}dfs(node.left, targetSum);dfs(node.right, targetSum);path.remove(path.size() - 1);}
}

复杂度分析

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2),其中 n n n 是二叉树的结点数。每个结点都被访问一次,最坏情况下每次将路径添加到结果中的时间是 O ( n ) O(n) O(n),因此总时间复杂度是 O ( n 2 ) O(n^2) O(n2)

  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 是二叉树的结点数。空间复杂度主要是递归调用的栈空间以及深度优先搜索过程中存储路径的空间,取决于二叉树的高度,最坏情况下二叉树的高度是 O ( n ) O(n) O(n)。注意返回值不计入空间复杂度。

解法二

思路和算法

使用广度优先搜索寻找结点值总和等于目标和的路径时,首先找到这些路径对应的叶结点,然后得到从叶结点到根结点的路径,将路径翻转之后即可得到相应的路径。

为了得到从叶结点到根结点的路径,需要使用哈希表存储每个结点的父结点,在广度优先搜索的过程中即可将每个结点和父结点的关系存入哈希表中。

广度优先搜索需要维护两个队列,分别存储结点与对应的结点值总和。广度优先搜索的过程中,如果遇到一个叶结点对应的结点值总和等于目标和,则找到一条结点值总和等于目标和的路径,利用哈希表中存储的父结点信息得到从当前叶结点到根结点的路径,然后将路径翻转,添加到结果中。

代码

class Solution {List<List<Integer>> paths = new ArrayList<List<Integer>>();Map<TreeNode, TreeNode> parents = new HashMap<TreeNode, TreeNode>();public List<List<Integer>> pathSum(TreeNode root, int targetSum) {if (root == null) {return paths;}Queue<TreeNode> nodeQueue = new ArrayDeque<TreeNode>();Queue<Integer> sumQueue = new ArrayDeque<Integer>();nodeQueue.offer(root);sumQueue.offer(root.val);while (!nodeQueue.isEmpty()) {TreeNode node = nodeQueue.poll();int sum = sumQueue.poll();TreeNode left = node.left, right = node.right;if (left == null && right == null && sum == targetSum) {paths.add(getPath(node));}if (left != null) {parents.put(left, node);nodeQueue.offer(left);sumQueue.offer(sum + left.val);}if (right != null) {parents.put(right, node);nodeQueue.offer(right);sumQueue.offer(sum + right.val);}}return paths;}public List<Integer> getPath(TreeNode node) {List<Integer> path = new ArrayList<Integer>();while (node != null) {path.add(node.val);node = parents.get(node);}Collections.reverse(path);return path;}
}

复杂度分析

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2),其中 n n n 是二叉树的结点数。每个结点都被访问一次,最坏情况下每次将路径添加到结果中的时间是 O ( n ) O(n) O(n),因此总时间复杂度是 O ( n 2 ) O(n^2) O(n2)

  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 是二叉树的结点数。空间复杂度主要是哈希表和队列空间,哈希表需要存储每个结点的父结点,需要 O ( n ) O(n) O(n) 的空间,两个队列内元素个数都不超过 n n n。注意返回值不计入空间复杂度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/94787.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

我的第一个react.js 的router工程

react.js 开发的时候&#xff0c;都是针对一个页面的&#xff0c;多个页面就要用Router了&#xff0c;本文介绍我在vscode 下的第一个router 工程。 我在学习react.js 前端开发&#xff0c;学到router 路由的时候有点犯难了。经过1-2天的努力&#xff0c;终于完成了第一个工程…

使用Pytorch构建神经网络

构建神经网络的典型流程 定义一个拥有可学习参数的神经网络遍历训练数据集处理输入数据使其流经神经网络计算损失值将网络参数的梯度进行反向传播以一定的规则更新网络的权重 我们首先定义一个Pytorch实现的神经网络: # 导入若干工具包 import torch import torch.nn as nn …

亲,您的假期余额已经严重不足了......

引言 大家好&#xff0c;我是亿元程序员&#xff0c;一位有着8年游戏行业经验的主程。 转眼八天长假已经接近尾声了&#xff0c;今天来总结一下大家的假期&#xff0c;聊一聊假期关于学习的看法&#xff0c;并预估一下大家节后大家上班时的样子。 1.放假前一天 即将迎来八天…

基于Web安全的Python编程(1)

目录 一、http协议基础知识介绍 1、http协议分类 2、请求方法 3、什么是URL 4、请求头 5、响应状态码 二、常用Python库、函数、操作 三、http常用请求方法 1、不带参请求 2、带参数请求&#xff08;get和post存在细微区别&#xff09; 四、http响应属性获取 1、获取…

计算机网络(六):应用层

参考引用 计算机网络微课堂-湖科大教书匠计算机网络&#xff08;第7版&#xff09;-谢希仁 1. 应用层概述 应用层是计算机网络体系结构的最顶层&#xff0c;是设计和建立计算机网络的最终目的&#xff0c;也是计算机网络中发展最快的部分 早期基于文本的应用 (电子邮件、远程登…

分布式架构篇

1、微服务 微服务架构风格&#xff0c;就像是把一个单独的应用程序开发为一套小服务&#xff0c;每个服务运行在自己的进程中&#xff0c;并使用轻量级机制通信&#xff0c;通常是 HTTP API。这些服务围绕业务能力来构建&#xff0c;并通过完全自动化部署机制来独立部署。这些…

Spring 原理

它是一个全面的、企业应用开发一站式的解决方案&#xff0c;贯穿表现层、业务层、持久层。但是 Spring仍然可以和其他的框架无缝整合。 1 Spring 特点 轻量级控制反转面向切面容器框架集合 2 Spring 核心组件 3 Spring 常用模块 4 Spring 主要包 5 Spring 常用注解 bean…

第十七章:Java连接数据库jdbc(java和myql数据库连接)

1.进入命令行&#xff1a;输入cmd&#xff0c;以管理员身份运行 windowsr 2.登录mysql 3.创建库和表 4.使用Java命令查询数据库操作 添加包 导入包的快捷键 选择第四个 找到包的位置 导入成功 创建java项目 二&#xff1a;连接数据库&#xff1a; 第一步&#xff1a;注册驱动…

设计模式 - 策略模式

目录 一. 前言 二. 实现 一. 前言 策略模式 (Strategy Pattern) 是指对一系列的算法定义&#xff0c;并将每一个算法封装起来&#xff0c;而且使它们还可以相互替换。此模式让算法的变化独立于使用算法的客户。 与状态模式的比较 状态模式的类图和策略模式类似&#xff0c;并…

VUE3照本宣科——内置指令与自定义指令及插槽

VUE3照本宣科——内置指令与自定义指令及插槽 前言一、内置指令1.v-text2.v-html3.v-show4.v-if5.v-else6.v-else-if7.v-for8.v-on9.v-bind10.v-model11.v-slot12.v-pre13.v-once14.v-memo15.v-cloak 二、自定义指令三、插槽1.v-slot2.useSlots3.defineSlots() 前言 &#x1f…

Windows下启动freeRDP并自适应远端桌面大小

几个二进制文件 xfreerdp # Linux下的&#xff0c;an X11 Remote Desktop Protocol (RDP) client which is part of the FreeRDP project wfreerdp.exe # Windows下的&#xff0c;freerdp2.0 主程序&#xff0c;freerdp3.0将废弃 sdl-freerdp.exe # Windows下的&…

【AI视野·今日NLP 自然语言处理论文速览 第四十三期】Thu, 28 Sep 2023

AI视野今日CS.NLP 自然语言处理论文速览 Thu, 28 Sep 2023 Totally 38 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Cross-Modal Multi-Tasking for Speech-to-Text Translation via Hard Parameter Sharing Authors Brian Yan,…

STM32CubeMX学习笔记-USB接口使用(CDC虚拟串口)

STM32CubeMX学习笔记-USB接口使用&#xff08;CDC虚拟串口&#xff09; 一、USB简介二、新建工程1. 打开 STM32CubeMX 软件&#xff0c;点击“新建工程”2. 选择 MCU 和封装3. 配置时钟4. 配置调试模式 三、USB3.1 参数配置3.3 配置时钟3.4 USB Device 四、生成代码五、查看端口…

MySQL5.7版本与8.0版本在Ubuntu(WSL环境)系统安装

目录 前提条件 1. MySQL5.7版本在Ubuntu&#xff08;WSL环境&#xff09;系统安装 1. 1 下载apt仓库文件 1.2 配置apt仓库 1.3 更新apt仓库的信息 1.4 检查是否成功配置MySQL5.7的仓库 5. 安装MySQL5.7 1.6 启动MySQL 1.7 对MySQL进行初始化 1.7.1 输入密码 …

Lucene学习总结之Lucene的索引文件格式

当我们真正进入到Lucene源代码之中的时候&#xff0c;我们会发现: Lucene的索引过程&#xff0c;就是按照全文检索的基本过程&#xff0c;将倒排表写成此文件格式的过程。Lucene的搜索过程&#xff0c;就是按照此文件格式将索引进去的信息读出来&#xff0c;然后计算每篇文档打…

数据结构 2.1 线性表的定义和基本操作

数据结构三要素——逻辑结构、数据的运算、存储结构&#xff08;物理结构&#xff09; 线性表的逻辑结构 线性表是具有相同数据类型的n&#xff08;n>0&#xff09;个数据元素的有限序列&#xff0c;其中n为表长&#xff0c;当n0时&#xff0c;线性表是一个空表。 每个数…

单层神经网络

神经网络 人工神经网络&#xff08;Artificial Neural Network&#xff0c;ANN&#xff09;&#xff0c;简称神经网络&#xff08;Neural Network&#xff0c;NN&#xff09;&#xff0c;是一种模仿生物神经网络的结构和功能的数学模型或计算模型。1943年&#xff0c;McCulloc…

SpringMVC(二)@RequestMapping注解

我们先新建一个Module。 我们的依赖如下所示&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaL…

uni-app:获取元素宽高

效果 代码 这里我定义的宽为500px,高为200排序,控制台输出的结果是502,202。原因是我设置了上下左右宽度各为1px的border边框导致 核心代码分析 // const query uni.createSelectorQuery();表示创建了一个选择器查询实例。通过这个实例&#xff0c;你可以使用不同的方法来选择…

实验3.2 分期付款计算器

目录 实验目的‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬ 实验内容‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬…