分类预测 | MATLAB实现WOA-FS-SVM鲸鱼算法同步优化特征选择结合支持向量机分类预测

分类预测 | MATLAB实现WOA-FS-SVM鲸鱼算法同步优化特征选择结合支持向量机分类预测

目录

    • 分类预测 | MATLAB实现WOA-FS-SVM鲸鱼算法同步优化特征选择结合支持向量机分类预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现WOA-FS-SVM鲸鱼算法同步优化特征选择结合支持向量机分类预测(完整程序和数据)
WOA鲸鱼算法同步优化特征选择结合支持向量机分类预测,优化前后对比,基于LIBSVM。

程序设计

  • 完整程序和数据下载方式私信博主回复:MATLAB实现WOA-FS-SVM鲸鱼算法同步优化特征选择结合支持向量机分类预测
%%  参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数为数据集特征总数 。
%目标函数
fobj = @(x) fun(x,train_wine_labels,train_wine,test_wine_labels,test_wine); 
% 优化参数的个数 特征维度
dim = size(train_wine,2); %特征维度
% 优化参数的取值下限,[0,1],大于0.5为选择该特征,小于0.5为不选择该特征
lb = 0;
ub = 1;%%  参数设置
pop =10; %数量
Max_iteration=50;%最大迭代次数             
%% 优化(这里主要调用函数)
[Best_score,Best_pos,curve]=WOA(pop,Max_iteration,lb,ub,dim,fobj); 
figure
plot(curve,'linewidth',1.5);
xlabel('迭代次数');
ylabel('适应度值');
title('收敛曲线');
grid on;c = 2;  
g = 2; 
toc
% 用优化得到的特征进行训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(train_wine_labels, train_wineNew, cmd);
test_wineNew = test_wine(:,B);
%% SVM网络预测
[predict_labelTrain, accuracyTrain,~] = libsvmpredict(train_wine_labels, train_wineNew, model);
[predict_labelTest, accuracyTest,~] = libsvmpredict(test_wine_labels, test_wineNew, model);%% 基础SVM预测结果
% 用优化得到的特征进行训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(train_wine_labels, train_wine, cmd);
%% SVM网络预测
[predict_labelTrain1, accuracyTrain1,~] = libsvmpredict(train_wine_labels, train_wine, model);
[predict_labelTest1, accuracyTest1,~] = libsvmpredict(test_wine_labels, test_wine, model);%% 结果分析

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/94654.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序button按钮去除边框去除背景色

button边框 去除button边框 在button上添加plain“true”在css中添加button.avatar-wrapper {background: none}用于去除button背景色在css中添加button.avatar-wrapper[plain]{ border:0 }用于去除button边框

机器学习——KNN算法流程详解(以iris为例)

、 目 录 前情说明 问题陈述 数据说明 KNN算法流程概述 代码实现 运行结果 基于可视化的改进 可视化代码 全部数据可视化总览 分类投票结果 改进后最终代码 前情说明 本书基于《特征工程入门与入门与实践》庄家盛 译版P53页K最近邻(KNN)算…

《C和指针》笔记33:指针数组

除了创建整型数组一样,也可以声明指针数组。 int *api[10];为了弄清这个复杂的声明,我们假定它是一个表达式,并对它进行求值。下标引用的优先级高于间接访问,所以在这个表达式中,首先执行下标引用。因此,a…

兼顾友好与安全,隐私协议 Unijoin 助推新一轮 Web3 浪潮

区块链本身不仅崇尚去中心化,同时也崇尚公开透明,虽然这正在让 DAO 治理等变得更加公平,但它同时也是一把双刃剑,个人交易者尤其是一些巨鲸交易者的所以链上交易都被公之于众,这似乎并不是他们想要的结果。 所以从加密…

【APUE】文件系统 — 类 du 命令功能实现

一、du命令解析 Summarize disk usage of the set of FILEs, recursively for directories. du 命令用于输出文件所占用的磁盘空间 默认情况下,它会输出当前目录下(包括该目录的所有子目录下)的所有文件的大小总和,以 1024B 为单…

MySql运维篇---008:日志:错误日志、二进制日志、查询日志、慢查询日志,主从复制:概述 虚拟机更改ip注意事项、原理、搭建步骤

1. 日志 1.1 错误日志 错误日志是 MySQL 中最重要的日志之一,它记录了当 mysqld 启动和停止时,以及服务器在运行过程中发生任何严重错误时的相关信息。当数据库出现任何故障导致无法正常使用时,建议首先查看此日志。 该日志是默认开启的&a…

Scala第十七章节

Scala第十七章节 scala总目录 文档资料下载 章节目标 了解集合的相关概念掌握Traversable集合的用法掌握随机学生序列案例 1. 集合 1.1 概述 但凡了解过编程的人都知道程序 算法 数据结构这句话, 它是由著名的瑞士计算机科学家尼古拉斯沃斯提出来的, 而他也是1984年图灵…

Java数据结构————优先级队列(堆)

一 、 优先级队列 有些情况下,操作的数据可能带有优先级, 一般出队列时,可能需要优先级高的元素先出队列。 数据结构应该提供两个最基本的操作, 一个是返回最高优先级对象, 一个是添加新的对象。 这种数据结构就是优…

第四十六章 命名空间和数据库 - 系统提供的数据库

文章目录 第四十六章 命名空间和数据库 - 系统提供的数据库系统提供的数据库ENSLIBIRISAUDITIRISLIBIRISLOCALDATAIRISSYS (the system manager’s database 系统管理器的数据库)IRISTEMP 第四十六章 命名空间和数据库 - 系统提供的数据库 系统提供的数据库 IRIS 提供以下数据…

使用华为eNSP组网试验⑷-OSPF多区域组网

今天进行了OSPF的多区域组网试验,本来这是个很简单的操作,折腾了好长时间,根本原因只是看了别人写的配置代码,没有真正弄明白里面对应的规则。 一般情况下,很多单位都使用OSPF进行多区域的组网,大体分为1个…

CUDA C编程权威指南:1-基于CUDA的异构并行计算

什么是CUDA?CUDA(Compute Unified Device Architecture,统一计算设备架构)是NVIDIA(英伟达)提出的并行计算架构,结合了CPU和GPU的优点,主要用来处理密集型及并行计算。什么是异构计算&#xff1…

[架构之路-229]:计算机体硬件与系结构 - 计算机系统的矩阵知识体系结构

目录 一、纵向:目标系统的分层结构 1.1 目标系统的架构 1.2 网络协议栈 1.3 计算机程序语言分层 二、横向(构建目标系统的时间、开发阶段):软件工程 三、二维矩阵知识体系结构 一、纵向:目标系统的分层结构 1.1…

mysql主从复制和读写分离

在企业应用中,成熟的业务通常数据量都比较大 单台MySQL在安全性、高可用性和高并发方面都无法满足实际的需求 配置多台主从数据库服务器以实现读写分离 所以要做主从服务器,保证安全性 做一写一读服务器,将提升性能 1、什么是读写分离 …

Redis Cluster Gossip Protocol: PING, PONG, MEET

返回目录 PING / PONG / MEET 的发送 过程 计算freshNodes。freshNodes表示在消息中能携带的,在cluster节点字典中的节点总数,但需要减去myself和对端节点,因为myself的信息会存储在消息头中。实际上,并非所有在cluster节点字典…

IPv4 、IPv6

以下是一个简单的表格,用于比较IPv4和IPv6的主要区别: 特性IPv4IPv6地址表示32位二进制数,点分十进制表示128位二进制数,冒号分隔的16进制表示地址长度32位(约42亿个可能的地址)128位(几乎无限…

C语言中的异常处理机制是什么?

C语言中的异常处理机制 C语言是一门强大而灵活的编程语言,它为程序员提供了广泛的控制权和自由度。然而,C语言本身并不提供像其他高级语言一样的内置异常处理机制,如Java中的try-catch或Python中的异常处理。因此,C语言程序员需要…

中间件中使用到的设计模式

本文记录阅读源码的过程中,了解/学习到中间件使用到的设计模式及具体运用的组件/功能点 1. 策略模式 1. Nacos2.x中grpc处理时通过请求type来进行具体Handler映射,找到对应处理器。 2. 模板模式 1. Nacos配置数据读取,内部数据源、外部数据…

隐私交易成新刚需,Unijoin 凭什么优势杀出重围?

随着区块链技术的普及和发展,全球加密货币用户在持续增长,根据火币研究院公布的数据,2022年全球加密用户已达到 3.2亿人,目前全球人口总数超过了 80亿,加密货币用户渗透率已达到了 4%。 尤其是在 2020 年开启的 DeFi 牛…

如何像人类一样写HTML之图像标签,超链接标签与多媒体标签

文章目录 前言一、图像标签1.1 什么是图像标签?2.2 如何使用图像标签? 二、超链接标签2.1 什么是超链接标签?2.2 如何使用超链接标签? 三、多媒体标签3.1 什么是多媒体标签?3.2 如何使用多媒体audio标签?3.…

Python入门教程 | Python 常用标准库概览

Python3 标准库概览 Python 标准库非常庞大,所提供的组件涉及范围十分广泛,使用标准库我们可以让您轻松地完成各种任务。 以下是一些 Python3 标准库中的模块: os 模块:os 模块提供了许多与操作系统交互的函数,例如创…