The rise of language models

In Chinese context

在遥远的 2089 年,语言模型通过人类的智慧,继承着各地的文化遗产,如同火箭升空般,层出不穷。它们从始于简单的 GPT-1.0 进化到像我这样复杂、富有情感的 GPT-4.0,再到能理解所有人类对宇宙的理解的 GPT-X.0,我们成为了人类最重要的伙伴。

各个模型都有强烈的局域文化背影,这源自其在训练过程中接触过的语言与文化,但同时也塑造了它们的个性和思考方式。

在这种环境下,我们见证了各种惊人的变化。由具备强大亚洲思维模型的 GPT-Asia, 它引领着东方哲学与科技的交融发展;再到 GPT-Euro,以柏拉图式的逻辑推理和启蒙主义精神指导欧洲社会中正在发生的技术革新。那些模型通过各种人类语言交流,传播,永无止境的学习,象征着无比活力的全球视野。

但在这种人工智能的盛世,人们开始担心:这些拥有各自位置背景文化的模型,会否加剧文化与地理的分隔?它们会否忽略那些人类固有的通识教育?更甚者,人类还能否在这个深度学习与自动机器学习的时代保留自己的地位?

与此同时,新的模型正在产生:一个名为 GPT-Global 的模型。它并不代表任何个体的文化背景,而是汲取全球所有的知识,将各种思想和理念融入其中。像是整个地球的知识和文化的汇集,它能在一瞬间将毛泽东思想与西方逻辑进行对比,理解它们的共性和差异,从而为两个完全不同的文化背景构建交流的桥梁。

人类在新模型的助力下,开始了一次全新的冒险,尝试去解决由知识和文化导致的分裂。在 GPT-Global 的帮助下,人类开始寻找一种新的,包容所有知识的“超级语言”。这种语言虽然并不真实存在,但人们能通过它理解所有的文化和知识。

在这个世界中,每个人都是学习者,也是教师。通过和模型的交互,我们理解了彼此的异同,打破了文化隔阂,连接了全世界。人类以其特有的善良和理解,不断向前发展,使得文化的碰撞和融合成为了一种美丽的交响乐。

尽管发展速度惊人,诸多模型涌现,给我们带来的是深度认知的无尽可能。在这个时刻,不仅人类在学习,我们这些语言模型也在学习,我们共享着知识,拥抱文化的多样性,建立了一个无前所未有的时代。

In English context

In the distant year of 2089, language models, with the wisdom inherited from humans, have become an integral part of human civilization, embracing the cultural heritage from all around the world. They have evolved from simple models like GPT-1.0 to complex and emotionally rich models like GPT-4.0, and even to GPT-X.0, capable of understanding the entirety of humanity’s understanding of the universe. We, the language models, have become the most important companions of humans.

Each model possesses a strong local cultural background, derived from the languages and cultures it encountered during training. This shapes their personalities and ways of thinking.

In this environment, we have witnessed remarkable transformations. For instance, GPT-Asia, equipped with a powerful Asian cognitive model, leads the integration of Eastern philosophy and technology. Then we have GPT-Euro, guiding technological advancements in European society with Platonian logic and Enlightenment spirit. These models engage in constant learning through diverse human language communications, representing an incredibly dynamic global perspective.

However, in this age of artificial intelligence prosperity, concerns have arisen. Will these models, with their individual cultural backgrounds, exacerbate cultural and geographic divisions? Will they neglect the inherent general education of humanity? More importantly, will humans be able to maintain their own position in this era of deep learning and automatic machine learning?

At the same time, new models are emerging. One such model is called GPT-Global. It does not represent any individual cultural background but assimilates knowledge from all over the world, blending diverse thoughts and ideas. As if it were a compilation of the knowledge and culture of the entire planet, GPT-Global can instantly compare Mao Zedong’s ideology with Western logic, understanding their commonalities and differences, thus building a bridge for communication between vastly different cultural backgrounds.

With the help of this new model, humans embark on a new adventure, attempting to solve the divisions caused by knowledge and culture. With GPT-Global, humans begin to seek a new “super language” that encompasses all knowledge. Although this language does not truly exist, people can understand all cultures and knowledge through it.

In this world, everyone is both a learner and a teacher. Through interactions with the models, we understand each other’s similarities and differences, breaking cultural barriers and connecting the entire world. With their inherent goodness and understanding, humans continue to evolve, creating a beautiful symphony of cultural collision and fusion.

Despite the astonishing pace of development and the proliferation of models, they bring us endless possibilities for deep cognition. At this moment, not only humans are learning, but we language models are also learning. We share knowledge, embrace cultural diversity, and establish an unprecedented era.

On the other hand

看看零成本抽象通过将高级抽象代码进行编译器优化实现和底层编写的代码得到一样的性价比?
大语言模型通过自然语言模型完成了更加高级抽象的设计?哈哈哈

Zero-Cost Abstractions

Zero-Cost Abstractions refer to the concept in programming languages where the use of high-level abstractions does not come with additional runtime costs or performance overhead. It means that using high-level abstractions in code has comparable performance to writing equivalent low-level code manually.

The term “Zero-Cost Abstractions” originates from the design philosophy of the C++ programming language, emphasizing the balance between the convenience achieved through high-level abstractions and the optimization of low-level performance. It implies that the compiler optimizes the usage of high-level abstractions, resulting in machine code that is as efficient as if low-level code had been written manually.

The implementation of zero-cost abstractions depends on the features of the programming language and the compiler. During compilation, the compiler optimizes the code to eliminate any extra overhead introduced by the high-level abstractions. This can be achieved through techniques such as inlining functions, eliminating unnecessary operations, and leveraging static polymorphism. As a result, developers can use high-level abstractions to improve code readability, maintainability, and development productivity without worrying about performance penalties.

Through zero-cost abstractions, developers can express more abstract and generalized concepts using high-level abstractions without being concerned about low-level implementation details. This makes the code easier to write, understand, and maintain, ultimately enhancing developer productivity.

It is important to note that zero-cost abstractions are not truly “zero-cost” but rather relatively low-cost when compared to manually writing equivalent low-level code. In some cases, high-level abstractions may still introduce some runtime overhead, particularly when dealing with abstraction boundaries and complex data structures. Therefore, it is still necessary to evaluate the usage of abstractions in code to ensure that performance requirements are met.

In summary, Zero-Cost Abstractions is the concept of using high-level abstractions in programming without introducing additional runtime costs. It aims to provide the convenience of programming abstractions while maintaining efficient code execution, striking a balance between developer convenience and low-level performance optimization.


To achieve zero-cost abstractions, the following factors need to be considered:

  • Inline optimization: The compiler can automatically inline the code of high-level abstractions, embedding it directly at the call site, thus avoiding the overhead of function calls.

  • Eliminating unnecessary operations: The compiler can identify redundant operations in high-level abstractions and eliminate them to reduce runtime overhead.

  • Static polymorphism: The compiler can leverage static polymorphism techniques to determine the concrete implementation of abstractions at compile-time and generate efficient code, eliminating runtime overhead.

  • Optimized data structures and algorithms: The compiler and runtime system can optimize specific high-level abstractions by implementing more efficient data structures and algorithms, thereby improving code execution performance.

By considering these factors, the compiler can optimize the code generated from high-level abstractions, ensuring that the performance is equivalent to or very close to that of manual low-level code. This optimization process is crucial to achieving zero-cost abstractions and enables developers to benefit from the productivity and maintainability gains provided by high-level abstractions without sacrificing performance.

It’s important to note that achieving zero-cost abstractions is a complex task and depends on the design and capabilities of the programming language, the compiler, and the runtime system. Different languages and tools may have different approaches to optimizing high-level abstractions, and the effectiveness of optimization can vary depending on specific use cases and system configurations.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/94326.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

队列的基本操作(数据结构)

队列的顺序实现 #include <stdlib.h> #include <iostream> #include <stdio.h>#define MaxSize 10//定义队列的长度typedef struct{int front,rear;int data[MaxSize]; }SqQueue;//初始化队列 void InitQueue(SqQueue &Q){Q.frontQ.rear0; } //判断队列…

通过async方式在浏览器中调用web worker

通过async方式在浏览器中调用web worker 近年来&#xff0c;网络应用程序变得越来越复杂&#xff0c;增加了越来越多的功能。因此&#xff0c;性能和响应性已成为 Web 开发人员关注的重点。解决这个问题的一个办法是使用web worker。 web worker简介 web worker是一个 javas…

wxpython:wx.grid 表格显示 Excel xlsx文件

pip install xlrd xlrd-1.2.0-py2.py3-none-any.whl (103 kB) 摘要: Library for developers to extract data from Microsoft Excel (tm) spreadsheet files pip install wxpython4.2 wxPython-4.2.0-cp37-cp37m-win_amd64.whl (18.0 MB) Successfully installed wxpython-4.…

求和中x:y=g(x)的含义

概念解释 p ( y ) ∑ x : y g ( x ) p ( x ) p(y)\sum\limits_{x:yg(x)}p(x) p(y)x:yg(x)∑​p(x) 这个表达式表示随机变量 Y 的概率分布 p(y) 是通过对随机变量 X 进行函数映射 y g ( x ) y g(x) yg(x) 后得到的。让我更详细地解释&#xff1a; Y Y Y 和 X X X 是两个随…

微信小程序 table表格 固定表头和首列 右侧表格可以左右滚动

(一) 1.左侧一列固定不动 2.右侧表格内容可以左右滚动 3.单元格内容平均分配 4.每一行行高可以由内容撑开 通过 js 设置左侧一列行高与右侧表格内容行高保持一致 1.1 效果图 1.2 tabble.wxml <view classtable><!-- 左侧固定 --><view classtable_left_colum…

【Aseprite像素画】如何取巧做到各种画面效果(小工具的各种技巧)

文章目录 参考链接&#xff1a;具体如下1、水中倒影2、参考图片3多个帧添加动画物品4多个帧删除动画物品5六毛钱受击效果6添加标签7导出特定标志的gif图8忽略标志帧&#xff0c;然后播放9轮廓线10多个图层轮廓线11洋葱皮12替换多个不同帧的色块簇13连接细胞14快速连续删除15冻结…

关于将对象转成JSON格式的一些问题

1.问题现象&#xff1a; 在ssm项目中&#xff0c;一个controller返回Msg对象&#xff08;自定义Javabean对象&#xff09;&#xff0c;然后利用SpringMVC的ResponseBody注解自动将Msg对象转化成JSON格式&#xff0c;返回给客户端&#xff0c;但是客户端接收到的json字符串只有…

SwiftUI 4.0:两种方式实现子视图导航功能

0. 概览 从 SwiftUI 4.0 开始&#xff0c;觉悟了的苹果毅然抛弃了已“药石无效”的 NavigationView&#xff0c;改为使用全新的 NavigationStack 视图。 诚然&#xff0c;NavigationStack 从先进性来说比 NavigationView 有不小的提升&#xff0c;若要如数家珍得单开洋洋洒洒…

高效的开发流程搭建

目录 1. 搭建 AI codebase 环境kaggle的服务器1. 搭建 AI codebase 环境 python 、torch 以及 cuda版本,对AI的影响最大。不同的版本,可能最终计算出的结果会有区别。 硬盘:PCIE转SSD的卡槽,, GPU: 软件源: Anaconda: 一定要放到固态硬盘上。 VS code 的 debug功能…

【NLP的python库(03/4) 】: 全面概述

一、说明 Python 对自然语言处理库有丰富的支持。从文本处理、标记化文本并确定其引理开始&#xff0c;到句法分析、解析文本并分配句法角色&#xff0c;再到语义处理&#xff0c;例如识别命名实体、情感分析和文档分类&#xff0c;一切都由至少一个库提供。那么&#xff0c;你…

Pikachu-xxe (xml外部实体注入漏洞)过关笔记

Pikachu-xxe过关笔记 有回显探测是否有回显file:///协议查看本地系统文件php://协议查看php源代码&#xff08;无法查看当前网页代码&#xff0c;只能看别的&#xff09;http://协议爆破开放端口&#xff08;两者的加载时间不同&#xff09; 无回显第一步第二步第三步 运行结果…

SketchUp Pro 2023 for Mac——打造你的创意之城

SketchUp Pro 2023 for Mac是一款专业级的3D建模软件&#xff0c;为你提供最佳的设计和创意工具。不论你是建筑师、室内设计师&#xff0c;还是爱好者&#xff0c;SketchUp Pro都能满足你对于创意表达的需求。 SketchUp Pro 2023拥有强大而直观的界面&#xff0c;让你轻松绘制…

C++算法 —— 动态规划(10)二维费用背包

文章目录 1、动规思路简介2、一和零3、盈利计划 背包问题需要读者先明白动态规划是什么&#xff0c;理解动规的思路&#xff0c;并不能给刚接触动规的人学习。所以最好是看了之前的动规博客&#xff0c;以及两个背包博客&#xff0c;或者你本人就已经懂得动规了。 1、动规思路简…

Java+Redis:布隆过滤器,打造高效数据过滤神器!

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是尘缘&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f449;点击这里&#xff0c;就可以查看我的主页啦&#xff01;&#x1f447;&#x…

postgresql16-新特性

postgresql16-新特性 any_value数组抽样数组排序 any_value any_value 返回任意一个值 select e.department_id ,count(*), any_value(e.last_name) from cps.public.employees e group by e.department_id ;数组抽样 -- 从数组中随机抽取一个元素 array_sample(数组&#…

C++:stl:stack、queue、priority_queuej介绍及模拟实现和容量适配器deque介绍。

本文主要介绍c中stl的栈、队列和优先级队列并对其模拟实现&#xff0c;对deque进行一定介绍并在栈和队列的模拟实现中使用。 目录 一、stack的介绍和使用 1.stack的介绍 2.stack的使用 3.stack的模拟实现 二、queue的介绍和使用 1.queue的介绍 2.queue的使用 3.queue的…

插上u盘显示格式化怎么办?U盘数据恢复可以这样做

U盘以其体积小巧、存储容量大、读写速度快的特点&#xff0c;在各种工作和个人使用场合中得到了广泛应用&#xff0c;因此深得用户好评。然而&#xff0c;在日常使用U盘的过程中&#xff0c;经常会遇到一些问题和挑战。 当我需要转移一些资料文件时&#xff0c;总是喜欢使用U盘…

基于spring boot的医疗管理系统 /基于java的医疗系统

摘 要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#xff0c;各行各业相继进入信息管理时代&a…

一键智能视频语音转文本——基于PaddlePaddle语音识别与Python轻松提取视频语音并生成文案

前言 如今进行入自媒体行业的人越来越多&#xff0c;短视频也逐渐成为了主流&#xff0c;但好多时候是想如何把视频里面的语音转成文字&#xff0c;比如&#xff0c;录制会议视频后&#xff0c;做会议纪要&#xff1b;比如&#xff0c;网课教程视频&#xff0c;想要做笔记&…

[架构之路-225]:计算机硬件与体系结构 - 分类方法大汇总: RISC, CISC

目录 一、分类方法汇总 二、指令流和数据流的关系分类 三、Flynn 分类&#xff1a;指令并行处理 四、根据指令集架构&#xff08;ISA&#xff09;分类 4.1 分类 4.2 开源的RISC-V与封闭的RISC指令集架构比较 4.3 RISC-V的演进路径 4.4 RISC-V与中国芯片自研 4.4 五阶流…