C++算法 —— 动态规划(10)二维费用背包

文章目录

  • 1、动规思路简介
  • 2、一和零
  • 3、盈利计划


背包问题需要读者先明白动态规划是什么,理解动规的思路,并不能给刚接触动规的人学习。所以最好是看了之前的动规博客,以及两个背包博客,或者你本人就已经懂得动规了。

1、动规思路简介

动规的思路有五个步骤,且最好画图来理解细节,不要怕麻烦。当你开始画图,仔细阅读题时,学习中的沉浸感就体验到了。

状态表示
状态转移方程
初始化
填表顺序
返回值

动规一般会先创建一个数组,名字为dp,这个数组也叫dp表。通过一些操作,把dp表填满,其中一个值就是答案。dp数组的每一个元素都表明一种状态,我们的第一步就是先确定状态。

状态的确定可能通过题目要求来得知,可能通过经验 + 题目要求来得知,可能在分析过程中,发现的重复子问题来确定状态。还有别的方法来确定状态,但都大同小异,明白了动规,这些思路也会随之产生。状态的确定就是打算让dp[i]表示什么,这是最重要的一步。状态表示通常用某个位置为结尾或者起点来确定。

状态转移方程,就是dp[i]等于什么,状态转移方程就是什么。像斐波那契数列,dp[i] = dp[i - 1] + dp[i - 2]。这是最难的一步。一开始,可能状态表示不正确,但不要紧,大胆制定状态,如果没法推出转移方程,没法得到结果,那这个状态表示就是错误的。所以状态表示和状态转移方程是相辅相成的,可以帮你检查自己的思路。

要确定方程,就从最近的一步来划分问题。

初始化,就是要填表,保证其不越界。像第一段所说,动规就是要填表。比如斐波那契数列,如果要填dp[1],那么我们可能需要dp[0]和dp[-1],这就出现越界了,所以为了防止越界,一开始就固定好前两个值,那么第三个值就是前两个值之和,也不会出现越界。初始化的方式不止这一点,有些问题,假使一个位置是由前面2个位置得到的,我们初始化最一开始两个位置,然后写代码,会发现不够高效,这时候就需要设置一个虚拟节点,一维数组的话就是在数组0位置处左边再填一个位置,整个dp数组的元素个数也+1,让原先的dp[0]变为现在的dp[1],二维数组则是要填一列和一行,设置好这一行一列的所有值,原先数组的第一列第一行就可以通过新填的来初始化,这个初始化方法在下面的题解中慢慢领会。

第二种初始化方法的注意事项就是如何初始化虚拟节点的数值来保证填表的结果是正确的,以及新表和旧表的映射关系的维护,也就是下标的变化。

填表顺序。填当前状态的时候,所需要的状态应当已经计算过了。还是斐波那契数列,填dp[4]的时候,dp[3]和dp[2]应当都已经计算好了,那么dp[4]也就出来了,此时的顺序就是从左到右。还有别的顺序,要依据前面的分析来决定。

返回值,要看题目要求。

背包问题有很多种分类,此篇是关于二维费用背包问题的,优化代码的方法在之前的两篇背包博客的模板题中,此篇就不写了。

2、一和零

474. 一和零

在这里插入图片描述

二维费用的背包问题就是原先的背包问题再加一个考虑因素,比如要考虑体积和重量。二维也有01和完全背包,这道题是二维01背包问题。

01背包中,dp[i][j]表示从前i个物品中挑选,总体积不超过j,最大价值的选法。这道题就要再加一维,变成dp[i][j][k],从前i个字符串中挑选,字符0的个数不超过j,字符1的个数不超过k,最大长度的选法。

状态转移方程。其实还是一样的分析。最后一个位置的字符串,如果不选i,那么就看dp[i - 1][j][k];如果选i,i这个字符串有a个0 1以及b个1,所以就看dp[i - 1][j - a][k - b],然后 + 1,并且要求j - a >= 0,k - b >= 0;两个值取max。

初始化时,i为0,则dp[0][j][k]全为0。返回值,因为要从整个字符串数组中挑选,而不是其中某一个最大值,所以返回值是最后一个值。

    int findMaxForm(vector<string>& strs, int m, int n) {int len = strs.size();vector<vector<vector<int>>> dp(len + 1, vector<vector<int>>(m + 1, vector<int>(n + 1)));for(int i = 1; i <= len; i++){int a = 0, b = 0;for(auto ch : strs[i - 1]){if(ch == '0') a++;else b++;}for(int j = 0; j <= m; j++){for(int k = 0; k <= n; k++){dp[i][j][k] = dp[i - 1][j][k];if(j >= a && k >= b)dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j - a][k - b] + 1);}}}return dp[len][m][n];}

但肯定不能这样写,做优化。去掉i这一维,j和k从大到小循环。

    int findMaxForm(vector<string>& strs, int m, int n) {int len = strs.size();vector<vector<int>> dp(m + 1, vector<int>(n + 1));for(int i = 1; i <= len; i++){int a = 0, b = 0;for(auto ch : strs[i - 1]){if(ch == '0') a++;else b++;}for(int j = m; j >= a; j--){for(int k = n; k >= b; k--){dp[j][k] = max(dp[j][k], dp[j - a][k - b] + 1);}}}return dp[m][n];}

3、盈利计划

879. 盈利计划

在这里插入图片描述
给了n和minProFit,group和profit数组,挑选几个人做某一份工作,人数不能超过n,并且利润,也就是profit数组里的被挑选的数,要>= minProFit,选group中第几个元素,利润就是profit数组中第几个元素。每个工作只能选一个,所以就是01背包问题。

让dp[i][j][k]表示从前i个工作中挑选,总人数不超过j,总利润至少为k,总共的选法。

状态转移方程。我们当然还是以最后一个位置i来分析。选择第i个工作,那就看dp[i - 1][j][k];如果选i,那么按照上一个题就是dp[i - 1][j - g[i]],k部分,由于是至少,思路就不一样,如果p[i]小于,那么就正常地看[k - p[i]]位置,如果p[i]大于k,就不能选择k - p[i]的位置了,因为数组下标不能为负数,所以这样写max(0, k - p[i]),如果p[i]更大,那么保证前面至少为0就行。然后这两个数相加。

初始化时dp[0][j][0] = 1。填表顺序要保证i从小到大即可。返回值是最后一个值。

    int profitableSchemes(int n, int m, vector<int>& g, vector<int>& p) {const int MOD = 1e9 + 7;int len = g.size();vector<vector<int>> dp(n + 1, vector<int>(m + 1));for(int j = 0; j <= n; j++) dp[j][0] = 1;for(int i = 1; i <= len; i++){for(int j = n; j >= g[i - 1]; j--){for(int k = m; k >= 0; k--){dp[j][k] += dp[j - g[i - 1]][max(0, k - p[i - 1])];dp[j][k] %= MOD;}}}return dp[n][m];}

结束。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/94313.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java+Redis:布隆过滤器,打造高效数据过滤神器!

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是尘缘&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f449;点击这里&#xff0c;就可以查看我的主页啦&#xff01;&#x1f447;&#x…

postgresql16-新特性

postgresql16-新特性 any_value数组抽样数组排序 any_value any_value 返回任意一个值 select e.department_id ,count(*), any_value(e.last_name) from cps.public.employees e group by e.department_id ;数组抽样 -- 从数组中随机抽取一个元素 array_sample(数组&#…

C++:stl:stack、queue、priority_queuej介绍及模拟实现和容量适配器deque介绍。

本文主要介绍c中stl的栈、队列和优先级队列并对其模拟实现&#xff0c;对deque进行一定介绍并在栈和队列的模拟实现中使用。 目录 一、stack的介绍和使用 1.stack的介绍 2.stack的使用 3.stack的模拟实现 二、queue的介绍和使用 1.queue的介绍 2.queue的使用 3.queue的…

插上u盘显示格式化怎么办?U盘数据恢复可以这样做

U盘以其体积小巧、存储容量大、读写速度快的特点&#xff0c;在各种工作和个人使用场合中得到了广泛应用&#xff0c;因此深得用户好评。然而&#xff0c;在日常使用U盘的过程中&#xff0c;经常会遇到一些问题和挑战。 当我需要转移一些资料文件时&#xff0c;总是喜欢使用U盘…

基于spring boot的医疗管理系统 /基于java的医疗系统

摘 要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#xff0c;各行各业相继进入信息管理时代&a…

一键智能视频语音转文本——基于PaddlePaddle语音识别与Python轻松提取视频语音并生成文案

前言 如今进行入自媒体行业的人越来越多&#xff0c;短视频也逐渐成为了主流&#xff0c;但好多时候是想如何把视频里面的语音转成文字&#xff0c;比如&#xff0c;录制会议视频后&#xff0c;做会议纪要&#xff1b;比如&#xff0c;网课教程视频&#xff0c;想要做笔记&…

[架构之路-225]:计算机硬件与体系结构 - 分类方法大汇总: RISC, CISC

目录 一、分类方法汇总 二、指令流和数据流的关系分类 三、Flynn 分类&#xff1a;指令并行处理 四、根据指令集架构&#xff08;ISA&#xff09;分类 4.1 分类 4.2 开源的RISC-V与封闭的RISC指令集架构比较 4.3 RISC-V的演进路径 4.4 RISC-V与中国芯片自研 4.4 五阶流…

【Kafka专题】Kafka收发消息核心参数详解

目录 前置知识课程内容一、从基础的客户端说起&#xff08;Java代码集成使用&#xff09;1.1 消息发送者源码示例1.2 消息消费者源码示例1.3 客户端使用小总结 *二、从客户端属性来梳理客户端工作机制*2.1 消费者分组消费机制2.2 生产者拦截器机制2.3 消息序列化机制2.4 消息分…

PHP 反序列化漏洞:身份标识

文章目录 参考环境访问修饰符访问修饰符PHP 与访问修饰符 手写身份标识身份标识定义身份标识控制字符 NUL在 PHP 中如何表示空字符&#xff1f; 通过空字符尝试构建包含非公共属性对象的序列化文本 空字符的传输控制字符的不可打印性结论另辟蹊径URL 字符编码将非 ASCII 字符文…

指针笔试题(带解析版)

题目2&#xff1a; struct MyStruct {int num;char* pcname;short sdate;char cha[2];short sba[4]; }*p; //结构体大小为32字节 //p0x100000 int main() {p 0x100000;printf("%p\n", p 0x1);//p&#xff1a;结构体指针&#xff0c;1下一个结构体指针&#xff0c;…

617. 合并二叉树

给你两棵二叉树&#xff1a; root1 和 root2 。 想象一下&#xff0c;当你将其中一棵覆盖到另一棵之上时&#xff0c;两棵树上的一些节点将会重叠&#xff08;而另一些不会&#xff09;。你需要将这两棵树合并成一棵新二叉树。合并的规则是&#xff1a;如果两个节点重叠&#…

Nginx在CentOS上的安装部署、RabbitMQ在CentOS上安装部署

目录 1. Nginx在CentOS上的安装部署 1.1 Nginx简介 1.2 Nginx安装 1.2.1 安装yum依赖程序 1.2.2 手动添加&#xff0c;nginx的yum仓库 1.2.3 通过yum安装最新稳定版的nginx 1.2.4 启动 1.2.5 配置防火墙放行 1.2.6 启动后浏览器输入Linux服务器的IP地址或主机…

最新AI创作系统/AI绘画系统/ChatGPT系统+H5源码+微信公众号版+支持Prompt应用

一、AI创作系统 SparkAi创作系统是基于国外很火的ChatGPT进行开发的AI智能问答系统和AI绘画系统。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图…

postgresql-聚合函数增强功能

postgresql-聚合函数增强功能 按季度统计入职员工 按季度统计入职员工 select -- extract截取&#xff0c;按季度进行统计入职员工总数 extract(year from hire_date), count(*) filter(where extract(quarter from hire_date) 1) "第一季度", count(*) filter(wh…

一文拿捏分布式协调Redis客服端-Redisson

Redisson 1.介绍 Redisson - 是一个高级的分布式协调Redis客服端 , 专注于分布式系统开发&#xff0c;让用户可以在分布式系统中很方便的去使用Redis。 2.相关使用 1.加锁 //底层是lua脚本保证了加锁的原子性 // 一直等待获取锁&#xff0c;直到获取到锁为止! 默认锁的存活…

Maven - MacOS 快速安装

配置信息 Maven 版本&#xff1a;3.6.3Maven 地址&#xff1a;Index of /dist/maven/maven-3IDEA&#xff1a;2023 Tips&#xff1a;Maven 版本最好不要超过 3.8.0&#xff0c;最新版 Maven 会不兼容一些配置信息。上面的 Maven 地址里可以选择自己想下载的版本&#xff08;这…

STM32三种开发方式及标准库和HAL库的编程差异

三种开发方式 STM32基于标准库函数和HAL库编程差异_stm32库函数和hal库-CSDN博客本文目的是以串口通信来简要分析STM32使用标准库函数和HAL库函数编程的差异。目录&#xff08;一&#xff09;开发方式1.配置寄存器2.库函数3.HAL库&#xff08;二&#xff09;库函数与HAL库对比…

Git小书系列笔记

Git准备 首先根据自己的系统安装git&#xff0c;安装成功后可以通过如下指令查看git版本。 使用Git之前&#xff0c;需要配置用户名称和电子邮件。 1.设置全局的用户名和电子邮件 git config --global user.name "Your Name" git config --global user.email &quo…

Spring的注解开发-注解原理解析-xml方式/注解方式组件扫描

目录 Spring注解的解析原理 xml配置组件扫描 注解方式配置组件扫描 原理图 yysy&#xff0c;没有搞太明白&#xff0c;真的复杂&#xff0c;欢迎大佬留言解惑 Spring注解的解析原理 使用Component等注解配置完毕后&#xff0c;要配置组件扫描才能使注解生效 xml配置组件扫…

driver.js 扩展下次“不再提示”功能

文档地址&#xff1a;https://github.com/kamranahmedse/driver.js 官方demo&#xff1a;https://kamranahmed.info/driver.js/ /*** Title: 页面引导 ……* Author: JackieZheng* Date: 2023-08-16 10:43:31* LastEditTime: 2023-08-16 10:55:08* LastEditors:* Description:*…