【Pytorch笔记】3.数学运算

深度之眼官方账号 - 01-03-mp4-张量操作与线性回归

torch.add()

功能:逐元素计算input+alpha×other

torch.add(input,alpha=1,other,out=None)

input:tensor;
alpha:other的系数,是个实数;
other:和input同样形状的tensor。

import torcht1 = torch.tensor([[2, 3], [4, 5]])
t2 = torch.tensor([[1, 1], [2, 2]])
t = torch.add(t1, alpha=2, other=t2)
print(t)

输出:

tensor([[4, 5],[8, 9]])

torch.sub()

功能:逐元素计算input-alpha×other

torch.sub(input,alpha=1,other,out=None)

input:tensor;
alpha:other的系数,是个实数;
other:和input同样形状的tensor。

import torcht1 = torch.tensor([[2, 3], [4, 5]])
t2 = torch.tensor([[1, 1], [2, 2]])
t = torch.add(t1, alpha=2, other=t2)
print(t)

输出:

tensor([[0, 1],[0, 1]])

torch.mul()

功能:逐元素计算 o u t i = i n p u t i × o t h e r i out_i=input_i \times other_i outi=inputi×otheri

torch.mul(input,other)

input:tensor;
other:和input同样尺寸的tensor。
other支持广播,即可以只向other传入一个数,torch利用广播机制变成同样尺寸的tensor。

import torcht1 = torch.tensor([[9, 12], [15, 18]])
t2 = torch.tensor([[3, 3], [2, 2]])
t = torch.mul(t1, other=t2)
print(t)

输出:

tensor([[27, 36],[30, 36]])

torch.div()

功能:逐元素计算 o u t i = i n p u t i o t h e r out_i=\frac{input_i}{other} outi=otherinputi

torch.div(input,other)

input:tensor;
other:和input同样尺寸的、元素不能为0的tensor。
other支持广播,即可以只向other传入一个数,torch利用广播机制变成同样尺寸的tensor。

import torcht1 = torch.tensor([[9, 12], [4, 6]])
t2 = torch.tensor([[3, 3], [2, 2]])
t = torch.div(t1, other=t2)
print(t)

输出:

tensor([[3., 4.],[2., 3.]])

torch.addcmul()

功能:逐元素计算 o u t i = i n p u t i + v a l u e × t e n s o r 1 i × t e n s o r 2 i out_i=input_i+value \times tensor1_i \times tensor2_i outi=inputi+value×tensor1i×tensor2i

torch.addcmul(input,value=1,tensor1,tensor2,out=None)

input:输入的tensor;
value:见公式,实数;
tensor1:和input相同形状的tensor,见公式;
tensor2:和input相同形状的tensor,见公式。

import torcht1 = torch.tensor([[2., 3.], [4., 5.]])
t2 = torch.tensor([[4., 6.], [8., 10.]])
t3 = torch.tensor([[2., 2.], [2., 2.]])
t = torch.addcmul(t1, value=2, tensor1=t2, tensor2=t3)
print(t)

输出:

tensor([[18., 27.],[36., 45.]])

torch.addcdiv()

功能:逐元素计算 o u t i = i n p u t i + v a l u e × t e n s o r 1 i t e n s o r 2 i out_i=input_i+value \times\frac{tensor1_i}{tensor2_i} outi=inputi+value×tensor2itensor1i

torch.addcdiv(input,value=1,tensor1,tensor2,out=None)

input:输入的tensor;
value:见公式,实数;
tensor1:和input相同形状的tensor,见公式;
tensor2:和input相同形状但是元素中不能出现0的tensor,见公式。
注:input、tensor1、tensor2的内容需要是浮点型。如果使用整数会报如下错误:

RuntimeError: Integer division with addcdiv is no longer supported, and in a future release addcdiv will perform a true division of tensor1 and tensor2. The historic addcdiv behavior can be implemented as (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. The future addcdiv behavior is just the latter implementation: (input + value * tensor1 / tensor2), for all dtypes.

import torcht1 = torch.tensor([[2., 3.], [4., 5.]])
t2 = torch.tensor([[4., 6.], [8., 10.]])
t3 = torch.tensor([[2., 2.], [2., 2.]])
t = torch.addcdiv(t1, value=2, tensor1=t2, tensor2=t3)
print(t)

输出:

tensor([[ 6.,  9.],[12., 15.]])

torch.log()

功能:逐元素求解 o u t i = l o g e ( i n p u t i ) out_i=log_e(input_i) outi=loge(inputi)

torch.log(input,out=None)

input:待求解的tensor。

import torcht1 = torch.tensor([[9., -12.], [15., 18.]])
t = torch.log(t1)
print(t)

输出:

tensor([[2.1972,    nan],[2.7081, 2.8904]])

torch.log10()

功能:逐元素求解 o u t i = l o g 10 ( i n p u t i ) out_i=log_{10}(input_i) outi=log10(inputi)

torch.log10(input,out=None)

input:待求解的tensor。

import torcht1 = torch.tensor([[9., -12.], [15., 18.]])
t = torch.log10(t1)
print(t)

输出:

tensor([[0.9542,    nan],[1.1761, 1.2553]])

torch.log2()

功能:逐元素求解 o u t i = l o g 2 ( i n p u t i ) out_i=log_2(input_i) outi=log2(inputi)

torch.log2(input,out=None)

input:待求解的tensor。

import torcht1 = torch.tensor([[8., -12.], [16., 18.]])
t = torch.log2(t1)
print(t)

输出:

tensor([[3.0000,    nan],[4.0000, 4.1699]])

torch.exp()

功能:逐元素求解 o u t i = e i n p u t i out_i=e^{input_i} outi=einputi

torch.exp(input,out=None)

input:待求解的tensor。

import math
import torcht1 = torch.tensor([[-2., 0.], [1., math.log(2.)]])
t = torch.exp(t1)
print(t)

输出:

tensor([[0.1353, 1.0000],[2.7183, 2.0000]])

torch.pow()

功能:逐元素求解 o u t i = x i e x p o n e n t i out_i=x_i^{exponent_i} outi=xiexponenti

torch.pow(input,exponent,out=None)

input:待求解的tensor。
exponent:与input相同形状的tensor。
如果exponent是一个数,torch会广播成一个和input相同形状的tensor。

import torcht1 = torch.tensor([[1., 2.], [3., 4.]])
t2 = torch.tensor([[3., 2.], [4., 2.]])
t3 = torch.pow(t1, 2.)
t4 = torch.pow(t1, t2)
print(t3)
print(t4)

输出:

tensor([[ 1.,  4.],[ 9., 16.]])
tensor([[ 1.,  4.],[81., 16.]])

tensor.abs()

功能:逐元素取绝对值, o u t i = ∣ i n p u t i ∣ out_i=|input_i| outi=inputi

torch.abs(input,out=None)

input:待求解的tensor。

import torcht1 = torch.tensor([[1., -2.], [-3., 4.]])
t = torch.abs(t1)
print(t)

输出:

tensor([[1., 2.],[3., 4.]])

tensor.acos()

功能:逐元素求解 o u t i = c o s − 1 ( i n p u t i ) out_i=cos^{-1}(input_i) outi=cos1(inputi)

torch.acos(input,out=None)

input:待求解的tensor。

import torcht1 = torch.randn(4)
print(t1)
t = torch.acos(t1)
print(t)

输出:

tensor([ 0.5100,  0.1678, -0.0250,  0.3119])
tensor([1.0357, 1.4022, 1.5958, 1.2536])

torch.cosh()

功能:逐元素求解 o u t i = c o s h ( i n p u t i ) out_i=cosh(input_i) outi=cosh(inputi)
注: c o s h ( x ) = e x + e − x 2 cosh(x)=\frac{e^x+e^{-x}}{2} cosh(x)=2ex+ex

torch.cosh(input,out=None)

input:待求解的tensor。

import torcht1 = torch.randn(4)
print(t1)
t = torch.cosh(t1)
print(t)torch.cosh(input,out=None)

输出:

tensor([-0.3447, -0.2875, -0.2717, -1.3635])
tensor([1.0600, 1.0416, 1.0371, 2.0828])

torch.cos()

功能:逐元素求解 o u t i = c o s ( i n p u t i ) out_i=cos(input_i) outi=cos(inputi)

torch.cos(input,out=None)

input:待求解的tensor。

import torcht1 = torch.randn(4)
print(t1)
t = torch.cos(t1)
print(t)torch.cosh(input,out=None)

输出:

tensor([-0.6443, -0.8991,  1.2432, -0.3162])
tensor([0.7995, 0.6223, 0.3218, 0.9504])

torch.asin()

功能:逐元素求解 o u t i = s i n − 1 ( i n p u t i ) out_i=sin^{-1}(input_i) outi=sin1(inputi)

torch.asin(input,out=None)

input:待求解的tensor。

import torcht1 = torch.randn(4)
print(t1)
t = torch.asin(t1)
print(t)

输出:

tensor([-0.7372, -0.0238, -1.8213, -0.0912])
tensor([-0.8289, -0.0238,     nan, -0.0913])

torch.atan()

功能:逐元素求解 o u t i = t a n − 1 ( i n p u t i ) out_i=tan^{-1}(input_i) outi=tan1(inputi)

torch.atan(input,out=None)

input:待求解的tensor。

import torcht1 = torch.randn(4)
print(t1)
t = torch.atan(t1)
print(t)

输出:

tensor([ 0.3620, -0.6551,  1.0304,  2.1545])
tensor([ 0.3474, -0.5799,  0.8003,  1.1362])

torch.atan2()

功能:逐元素求解 o u t i = t a n − 1 ( i n p u t i o t h e r i ) out_i=tan^{-1}(\frac{input_i}{other_i}) outi=tan1(otheriinputi)

torch.atan(input,other,out=None)

input:待求解的tensor。

import torcht1 = torch.randn(4)
print(t1)
t2 = torch.randn(4)
print(t2)
t = torch.atan2(t1, t2)
print(t)

输出:

tensor([ 1.9372,  0.7993, -1.4123,  0.4260])
tensor([-1.5106,  1.2147, -1.4479,  0.1674])
tensor([ 2.2331,  0.5820, -2.3686,  1.1963])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/94299.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新AI创作系统/AI绘画系统/ChatGPT系统+H5源码+微信公众号版+支持Prompt应用

一、AI创作系统 SparkAi创作系统是基于国外很火的ChatGPT进行开发的AI智能问答系统和AI绘画系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图…

postgresql-聚合函数增强功能

postgresql-聚合函数增强功能 按季度统计入职员工 按季度统计入职员工 select -- extract截取,按季度进行统计入职员工总数 extract(year from hire_date), count(*) filter(where extract(quarter from hire_date) 1) "第一季度", count(*) filter(wh…

图论---拓扑排序

概念 一个有向图,如果图中有入度为 0 的点,就把这个点删掉,同时也删掉这个点所连的边。一直进行上面的处理,如果所有点都能被删掉,则这个图可以进行拓扑排序。拓扑排序是对DAG(有向无环图)上的节…

一文拿捏分布式协调Redis客服端-Redisson

Redisson 1.介绍 Redisson - 是一个高级的分布式协调Redis客服端 , 专注于分布式系统开发,让用户可以在分布式系统中很方便的去使用Redis。 2.相关使用 1.加锁 //底层是lua脚本保证了加锁的原子性 // 一直等待获取锁,直到获取到锁为止! 默认锁的存活…

Maven - MacOS 快速安装

配置信息 Maven 版本:3.6.3Maven 地址:Index of /dist/maven/maven-3IDEA:2023 Tips:Maven 版本最好不要超过 3.8.0,最新版 Maven 会不兼容一些配置信息。上面的 Maven 地址里可以选择自己想下载的版本(这…

STM32三种开发方式及标准库和HAL库的编程差异

三种开发方式 STM32基于标准库函数和HAL库编程差异_stm32库函数和hal库-CSDN博客本文目的是以串口通信来简要分析STM32使用标准库函数和HAL库函数编程的差异。目录(一)开发方式1.配置寄存器2.库函数3.HAL库(二)库函数与HAL库对比…

Git小书系列笔记

Git准备 首先根据自己的系统安装git,安装成功后可以通过如下指令查看git版本。 使用Git之前,需要配置用户名称和电子邮件。 1.设置全局的用户名和电子邮件 git config --global user.name "Your Name" git config --global user.email &quo…

Spring的注解开发-注解原理解析-xml方式/注解方式组件扫描

目录 Spring注解的解析原理 xml配置组件扫描 注解方式配置组件扫描 原理图 yysy,没有搞太明白,真的复杂,欢迎大佬留言解惑 Spring注解的解析原理 使用Component等注解配置完毕后,要配置组件扫描才能使注解生效 xml配置组件扫…

driver.js 扩展下次“不再提示”功能

文档地址:https://github.com/kamranahmedse/driver.js 官方demo:https://kamranahmed.info/driver.js/ /*** Title: 页面引导 ……* Author: JackieZheng* Date: 2023-08-16 10:43:31* LastEditTime: 2023-08-16 10:55:08* LastEditors:* Description:*…

【9】c++设计模式——>开放封闭原则

开放-封闭原则说的是软件实体(类,模块,函数等)可以扩展,但是不可以修改,也就是说对于扩展是开放的,修改是封闭的。 该原则是程序设计的一种理想模式,在很多情况下无法做到完全的封闭…

Nginx限流熔断

一、Nginx限流熔断 Nginx 是一款流行的反向代理和负载均衡服务器,也可以用于实现服务熔断和限流。通过使用 Nginx 的限流和熔断模块,比如:ngx_http_limit_req_module 和 ngx_http_limit_conn_module,可以在代理层面对服务进行限流…

【JavaEE】synchronized 原理

文章目录 前言synchronized 的加锁过程1.无锁 -> 偏向锁2. 偏向锁 -> 轻量级锁3. 轻量级锁 -> 重量级锁 锁的优化操作1. 锁消除2. 锁粗化 相关面试题 前言 前面我们学习了关于JavaEE多线程方面的锁策略以及 synchronized 分别对应哪些锁策略,并且我们还了…

JMeter性能测试

性能测试前言 老师开局一句话:性能测试和你会不会JMeter一点关系没有…… 作者坚持技多不压身的原则,还是多学一点JMeter吧,看老师到底要怎么讲下去,什么并发量、吞吐量啥的…… 性能测试的核心思想:在于创造大量并发去…

消息队列-RabbitMQ(二)

接上文《消息队列-RabbitMQ&#xff08;一&#xff09;》 Configuration public class RabbitMqConfig {// 消息的消费方json数据的反序列化Beanpublic RabbitListenerContainerFactory<?> rabbitListenerContainerFactory(ConnectionFactory connectionFactory){Simple…

Open Cascade旋转变换平行线

在本人开发的弯管自动CAM软件中&#xff0c;有一个问题一直没有解决&#xff0c;就是180度平行管路需要做角度微调&#xff0c;以便进行YBC预览。研究了一番后&#xff0c;搞定了这个问题&#xff0c;关键在于采用OCC库实现拓扑变换。 本文将介绍如何使用OpenCASCADE库来实现平…

3.物联网射频识别,(高频)RFID应用ISO14443-2协议,(校园卡)Mifare S50卡

问题&#xff1a; 1) 14443协议&#xff0c;RFID标签的默认通信速率是 106kbps&#xff0c;也可以通过协商&#xff0c;调整为 &#xff08;fc/6413.56M/64&#xff09;212、424、 848kbps。 2) 14443-3 A类卡&#xff0c;上电后&#xff0c;读写器发送REQA命令&#xff0c;标签…

激光雷达中实现F-P标准具高热稳定性的帕尔贴精密温控解决方案

摘要&#xff1a;法布里-珀罗标准具作为一种具有高温度敏感性的精密干涉分光器件&#xff0c;在具体应用中对热稳定性具有很高的要求&#xff0c;如温度波动不能超过0.01℃&#xff0c;为此本文提出了相应的高精度恒温控制解决方案。解决方案具体针对温度控制精度和温度均匀性控…

利用LVM制作swap交换分区

首先把一个磁盘进行分区制作成物理卷&#xff0c;也可以直接将一整块磁盘做成物理卷,我这里使用的是磁盘分区&#xff1a;pvcreate /dev/sdb1 然后将这个物理卷制作成卷组&#xff1a;vgcreate vg1 /dev/sdb1; 将这个卷组制作成逻辑卷&#xff1a;lvcreate -L 900M -n lv1 vg…

计算机竞赛 题目: 基于深度学习的疲劳驾驶检测 深度学习

文章目录 0 前言1 课题背景2 实现目标3 当前市面上疲劳驾驶检测的方法4 相关数据集5 基于头部姿态的驾驶疲劳检测5.1 如何确定疲劳状态5.2 算法步骤5.3 打瞌睡判断 6 基于CNN与SVM的疲劳检测方法6.1 网络结构6.2 疲劳图像分类训练6.3 训练结果 7 最后 0 前言 &#x1f525; 优…

angularjs开发环境搭建

Angularjs是一个前端页面应用开发框架&#xff0c;其使用TypeScript作为开发语言&#xff0c;Angularjs的特性包括&#xff0c;使用组件、模板以及依赖注入的开发框架构建可扩展的web应用&#xff0c;使用易于集成的类库支持页面路由、页面表单、前后端接口交互等各种不同特性&…