深度之眼官方账号 - 01-03-mp4-张量操作与线性回归
torch.add()
功能:逐元素计算input+alpha×other
。
torch.add(input,alpha=1,other,out=None)
input:tensor;
alpha:other的系数,是个实数;
other:和input同样形状的tensor。
import torcht1 = torch.tensor([[2, 3], [4, 5]])
t2 = torch.tensor([[1, 1], [2, 2]])
t = torch.add(t1, alpha=2, other=t2)
print(t)
输出:
tensor([[4, 5],[8, 9]])
torch.sub()
功能:逐元素计算input-alpha×other
。
torch.sub(input,alpha=1,other,out=None)
input:tensor;
alpha:other的系数,是个实数;
other:和input同样形状的tensor。
import torcht1 = torch.tensor([[2, 3], [4, 5]])
t2 = torch.tensor([[1, 1], [2, 2]])
t = torch.add(t1, alpha=2, other=t2)
print(t)
输出:
tensor([[0, 1],[0, 1]])
torch.mul()
功能:逐元素计算 o u t i = i n p u t i × o t h e r i out_i=input_i \times other_i outi=inputi×otheri
torch.mul(input,other)
input:tensor;
other:和input同样尺寸的tensor。
other支持广播,即可以只向other传入一个数,torch利用广播机制变成同样尺寸的tensor。
import torcht1 = torch.tensor([[9, 12], [15, 18]])
t2 = torch.tensor([[3, 3], [2, 2]])
t = torch.mul(t1, other=t2)
print(t)
输出:
tensor([[27, 36],[30, 36]])
torch.div()
功能:逐元素计算 o u t i = i n p u t i o t h e r out_i=\frac{input_i}{other} outi=otherinputi
torch.div(input,other)
input:tensor;
other:和input同样尺寸的、元素不能为0的tensor。
other支持广播,即可以只向other传入一个数,torch利用广播机制变成同样尺寸的tensor。
import torcht1 = torch.tensor([[9, 12], [4, 6]])
t2 = torch.tensor([[3, 3], [2, 2]])
t = torch.div(t1, other=t2)
print(t)
输出:
tensor([[3., 4.],[2., 3.]])
torch.addcmul()
功能:逐元素计算 o u t i = i n p u t i + v a l u e × t e n s o r 1 i × t e n s o r 2 i out_i=input_i+value \times tensor1_i \times tensor2_i outi=inputi+value×tensor1i×tensor2i
torch.addcmul(input,value=1,tensor1,tensor2,out=None)
input:输入的tensor;
value:见公式,实数;
tensor1:和input相同形状的tensor,见公式;
tensor2:和input相同形状的tensor,见公式。
import torcht1 = torch.tensor([[2., 3.], [4., 5.]])
t2 = torch.tensor([[4., 6.], [8., 10.]])
t3 = torch.tensor([[2., 2.], [2., 2.]])
t = torch.addcmul(t1, value=2, tensor1=t2, tensor2=t3)
print(t)
输出:
tensor([[18., 27.],[36., 45.]])
torch.addcdiv()
功能:逐元素计算 o u t i = i n p u t i + v a l u e × t e n s o r 1 i t e n s o r 2 i out_i=input_i+value \times\frac{tensor1_i}{tensor2_i} outi=inputi+value×tensor2itensor1i。
torch.addcdiv(input,value=1,tensor1,tensor2,out=None)
input:输入的tensor;
value:见公式,实数;
tensor1:和input相同形状的tensor,见公式;
tensor2:和input相同形状但是元素中不能出现0的tensor,见公式。
注:input、tensor1、tensor2的内容需要是浮点型。如果使用整数会报如下错误:
RuntimeError: Integer division with addcdiv is no longer supported, and in a future release addcdiv will perform a true division of tensor1 and tensor2. The historic addcdiv behavior can be implemented as (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. The future addcdiv behavior is just the latter implementation: (input + value * tensor1 / tensor2), for all dtypes.
import torcht1 = torch.tensor([[2., 3.], [4., 5.]])
t2 = torch.tensor([[4., 6.], [8., 10.]])
t3 = torch.tensor([[2., 2.], [2., 2.]])
t = torch.addcdiv(t1, value=2, tensor1=t2, tensor2=t3)
print(t)
输出:
tensor([[ 6., 9.],[12., 15.]])
torch.log()
功能:逐元素求解 o u t i = l o g e ( i n p u t i ) out_i=log_e(input_i) outi=loge(inputi)。
torch.log(input,out=None)
input:待求解的tensor。
import torcht1 = torch.tensor([[9., -12.], [15., 18.]])
t = torch.log(t1)
print(t)
输出:
tensor([[2.1972, nan],[2.7081, 2.8904]])
torch.log10()
功能:逐元素求解 o u t i = l o g 10 ( i n p u t i ) out_i=log_{10}(input_i) outi=log10(inputi)。
torch.log10(input,out=None)
input:待求解的tensor。
import torcht1 = torch.tensor([[9., -12.], [15., 18.]])
t = torch.log10(t1)
print(t)
输出:
tensor([[0.9542, nan],[1.1761, 1.2553]])
torch.log2()
功能:逐元素求解 o u t i = l o g 2 ( i n p u t i ) out_i=log_2(input_i) outi=log2(inputi)。
torch.log2(input,out=None)
input:待求解的tensor。
import torcht1 = torch.tensor([[8., -12.], [16., 18.]])
t = torch.log2(t1)
print(t)
输出:
tensor([[3.0000, nan],[4.0000, 4.1699]])
torch.exp()
功能:逐元素求解 o u t i = e i n p u t i out_i=e^{input_i} outi=einputi。
torch.exp(input,out=None)
input:待求解的tensor。
import math
import torcht1 = torch.tensor([[-2., 0.], [1., math.log(2.)]])
t = torch.exp(t1)
print(t)
输出:
tensor([[0.1353, 1.0000],[2.7183, 2.0000]])
torch.pow()
功能:逐元素求解 o u t i = x i e x p o n e n t i out_i=x_i^{exponent_i} outi=xiexponenti
torch.pow(input,exponent,out=None)
input:待求解的tensor。
exponent:与input相同形状的tensor。
如果exponent是一个数,torch会广播成一个和input相同形状的tensor。
import torcht1 = torch.tensor([[1., 2.], [3., 4.]])
t2 = torch.tensor([[3., 2.], [4., 2.]])
t3 = torch.pow(t1, 2.)
t4 = torch.pow(t1, t2)
print(t3)
print(t4)
输出:
tensor([[ 1., 4.],[ 9., 16.]])
tensor([[ 1., 4.],[81., 16.]])
tensor.abs()
功能:逐元素取绝对值, o u t i = ∣ i n p u t i ∣ out_i=|input_i| outi=∣inputi∣。
torch.abs(input,out=None)
input:待求解的tensor。
import torcht1 = torch.tensor([[1., -2.], [-3., 4.]])
t = torch.abs(t1)
print(t)
输出:
tensor([[1., 2.],[3., 4.]])
tensor.acos()
功能:逐元素求解 o u t i = c o s − 1 ( i n p u t i ) out_i=cos^{-1}(input_i) outi=cos−1(inputi)。
torch.acos(input,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t = torch.acos(t1)
print(t)
输出:
tensor([ 0.5100, 0.1678, -0.0250, 0.3119])
tensor([1.0357, 1.4022, 1.5958, 1.2536])
torch.cosh()
功能:逐元素求解 o u t i = c o s h ( i n p u t i ) out_i=cosh(input_i) outi=cosh(inputi)
注: c o s h ( x ) = e x + e − x 2 cosh(x)=\frac{e^x+e^{-x}}{2} cosh(x)=2ex+e−x
torch.cosh(input,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t = torch.cosh(t1)
print(t)torch.cosh(input,out=None)
输出:
tensor([-0.3447, -0.2875, -0.2717, -1.3635])
tensor([1.0600, 1.0416, 1.0371, 2.0828])
torch.cos()
功能:逐元素求解 o u t i = c o s ( i n p u t i ) out_i=cos(input_i) outi=cos(inputi)
torch.cos(input,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t = torch.cos(t1)
print(t)torch.cosh(input,out=None)
输出:
tensor([-0.6443, -0.8991, 1.2432, -0.3162])
tensor([0.7995, 0.6223, 0.3218, 0.9504])
torch.asin()
功能:逐元素求解 o u t i = s i n − 1 ( i n p u t i ) out_i=sin^{-1}(input_i) outi=sin−1(inputi)
torch.asin(input,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t = torch.asin(t1)
print(t)
输出:
tensor([-0.7372, -0.0238, -1.8213, -0.0912])
tensor([-0.8289, -0.0238, nan, -0.0913])
torch.atan()
功能:逐元素求解 o u t i = t a n − 1 ( i n p u t i ) out_i=tan^{-1}(input_i) outi=tan−1(inputi)
torch.atan(input,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t = torch.atan(t1)
print(t)
输出:
tensor([ 0.3620, -0.6551, 1.0304, 2.1545])
tensor([ 0.3474, -0.5799, 0.8003, 1.1362])
torch.atan2()
功能:逐元素求解 o u t i = t a n − 1 ( i n p u t i o t h e r i ) out_i=tan^{-1}(\frac{input_i}{other_i}) outi=tan−1(otheriinputi)
torch.atan(input,other,out=None)
input:待求解的tensor。
import torcht1 = torch.randn(4)
print(t1)
t2 = torch.randn(4)
print(t2)
t = torch.atan2(t1, t2)
print(t)
输出:
tensor([ 1.9372, 0.7993, -1.4123, 0.4260])
tensor([-1.5106, 1.2147, -1.4479, 0.1674])
tensor([ 2.2331, 0.5820, -2.3686, 1.1963])