计算机竞赛 题目: 基于深度学习的疲劳驾驶检测 深度学习

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现目标
  • 3 当前市面上疲劳驾驶检测的方法
  • 4 相关数据集
  • 5 基于头部姿态的驾驶疲劳检测
    • 5.1 如何确定疲劳状态
    • 5.2 算法步骤
    • 5.3 打瞌睡判断
  • 6 基于CNN与SVM的疲劳检测方法
    • 6.1 网络结构
    • 6.2 疲劳图像分类训练
    • 6.3 训练结果
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的驾驶疲劳检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

关于对疲劳驾驶的研究不在少数, 不少学者从人物面部入手展开。 人类的面部包含着许多不同的特征信息, 例如其中一些比较明显的特征如打哈欠、 闭眼、
揉眼等表情特征可用来作为判断驾驶员是否处于疲劳状态的依据。 随着计算机技术的不断发展, 尤其是在人工智能相关技术勃发的今天,
借助计算机可以快速有效的识别出图片中人脸特征, 对处于当前时刻驾驶员的精神状态做出判断, 并将疲劳预警信息传达给司机, 以保证交通的安全运行,
减少伤亡事故的发生。

2 实现目标

经查阅相关文献,疲劳在人体面部表情中表现出大致三个类型:打哈欠(嘴巴张大且相对较长时间保持这一状态)、眨眼(或眼睛微闭,此时眨眼次数增多,且眨眼速度变慢)、点头(瞌睡点头)。本实验从人脸朝向、位置、瞳孔朝向、眼睛开合度、眨眼频率、瞳孔收缩率等数据入手,并通过这些数据,实时地计算出驾驶员的注意力集中程度,分析驾驶员是否疲劳驾驶和及时作出安全提示。

3 当前市面上疲劳驾驶检测的方法

学长通过对疲劳驾驶在不同方法下研究进展的分析, 可以更清晰的认识的到当下对该问题较为有效的判定方法。 根据研究对象的不同对检测方法进行分类,
具体分类方法如图

在这里插入图片描述

基于驾驶员面部特征的检测方法是根据人在疲劳时面部变化来分析此时的精神状态。 人在瞌睡、 疲劳时面部表情与清醒时有着明显的区别。
通过装置在车辆中的摄像头对驾驶员人脸图片的采集, 利用计算机图像处理和模式识别, 可以有效检测驾驶员的疲
劳特征信息, 比较直观的特征有: 打哈欠, 眨眼, 低头等。

4 相关数据集

学长收集的疲劳检测数据集

驾驶疲劳人脸数据库图片来源分为 3 部分, 每部分均包含疲劳、 轻度疲劳和非疲劳

在这里插入图片描述

5 基于头部姿态的驾驶疲劳检测

5.1 如何确定疲劳状态

  • 思路一:可利用姿态估计结果(如Pitch的读数)来判断是否点头及点头幅度

  • 思路二:或用鼻尖处30号点的前后移动值(或是方差,方差表示一个单位时间数据的偏离程度,程度越大,则表示发生点头动作的概率越大、点头幅度越大)

在这里插入图片描述

5.2 算法步骤

  • 第一步:2D人脸关键点检测;

  • 第二步:3D人脸模型匹配;

  • 第三步:求解3D点和对应2D点的转换关系;

  • 第四步:根据旋转矩阵求解欧拉角。

    import cv2
    import dlib
    import numpy as np
    from imutils import face_utils
    """
    思路:第一步:2D人脸关键点检测;第二步:3D人脸模型匹配;第三步:求解3D点和对应2D点的转换关系;第四步:根据旋转矩阵求解欧拉角。
    """# 加载人脸检测和姿势估计模型(dlib)face_landmark_path = 'D:/myworkspace/JupyterNotebook/fatigue_detecting/model/shape_predictor_68_face_landmarks.dat'"""
    只要知道世界坐标系内点的位置、像素坐标位置和相机参数就可以搞定旋转和平移矩阵(OpenCV自带函数solvePnp())
    """# 世界坐标系(UVW):填写3D参考点,该模型参考http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cppobject_pts = np.float32([[6.825897, 6.760612, 4.402142],  #33左眉左上角[1.330353, 7.122144, 6.903745],  #29左眉右角[-1.330353, 7.122144, 6.903745], #34右眉左角[-6.825897, 6.760612, 4.402142], #38右眉右上角[5.311432, 5.485328, 3.987654],  #13左眼左上角[1.789930, 5.393625, 4.413414],  #17左眼右上角[-1.789930, 5.393625, 4.413414], #25右眼左上角[-5.311432, 5.485328, 3.987654], #21右眼右上角[2.005628, 1.409845, 6.165652],  #55鼻子左上角[-2.005628, 1.409845, 6.165652], #49鼻子右上角[2.774015, -2.080775, 5.048531], #43嘴左上角[-2.774015, -2.080775, 5.048531],#39嘴右上角[0.000000, -3.116408, 6.097667], #45嘴中央下角[0.000000, -7.415691, 4.070434]])#6下巴角# 相机坐标系(XYZ):添加相机内参K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,0.0, 0.0, 1.0]# 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]# 像素坐标系(xy):填写凸轮的本征和畸变系数cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)
    dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)# 重新投影3D点的世界坐标轴以验证结果姿势reprojectsrc = np.float32([[10.0, 10.0, 10.0],[10.0, 10.0, -10.0],[10.0, -10.0, -10.0],[10.0, -10.0, 10.0],[-10.0, 10.0, 10.0],[-10.0, 10.0, -10.0],[-10.0, -10.0, -10.0],[-10.0, -10.0, 10.0]])# 绘制正方体12轴line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],[4, 5], [5, 6], [6, 7], [7, 4],[0, 4], [1, 5], [2, 6], [3, 7]]def get_head_pose(shape):# 填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/"""17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角"""# 像素坐标集合image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],shape[39], shape[42], shape[45], shape[31], shape[35],shape[48], shape[54], shape[57], shape[8]])"""用solvepnp或sovlepnpRansac,输入3d点、2d点、相机内参、相机畸变,输出r、t之后用projectPoints,输入3d点、相机内参、相机畸变、r、t,输出重投影2d点计算原2d点和重投影2d点的距离作为重投影误差"""# solvePnP计算姿势——求解旋转和平移矩阵:# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)# projectPoints重新投影误差reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix,dist_coeffs)reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))# 以8行2列显示# 计算欧拉角calc euler angle# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrixrotation_mat, _ = cv2.Rodrigues(rotation_vec)#罗德里格斯公式(将旋转矩阵转换为旋转向量)pose_mat = cv2.hconcat((rotation_mat, translation_vec))# 水平拼接,vconcat垂直拼接# eulerAngles –可选的三元素矢量,包含三个以度为单位的欧拉旋转角度_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)# 将投影矩阵分解为旋转矩阵和相机矩阵return reprojectdst, euler_angledef main():# returncap = cv2.VideoCapture(0)if not cap.isOpened():print("Unable to connect to camera.")return# 检测人脸detector = dlib.get_frontal_face_detector()# 检测第一个人脸的关键点predictor = dlib.shape_predictor(face_landmark_path)while cap.isOpened():ret, frame = cap.read()if ret:face_rects = detector(frame, 0)if len(face_rects) > 0:# 循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息shape = predictor(frame, face_rects[0])# 将脸部特征信息转换为数组array的格式shape = face_utils.shape_to_np(shape)# 获取头部姿态reprojectdst, euler_angle = get_head_pose(shape)pitch = format(euler_angle[0, 0])yaw = format(euler_angle[1, 0])roll = format(euler_angle[2, 0])print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))# 标出68个特征点for (x, y) in shape:cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)# 绘制正方体12轴for start, end in line_pairs:cv2.line(frame, reprojectdst[start], reprojectdst[end], (0, 0, 255))# 显示角度结果cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (20, 20), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)cv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (20, 50), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)cv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (20, 80), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)    # 按q退出提示cv2.putText(frame, "Press 'q': Quit", (20, 450),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)# 窗口显示 show with opencvcv2.imshow("Head_Posture", frame)if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头 release cameracap.release()# do a bit of cleanupcv2.destroyAllWindows()if __name__ == '__main__':main()

在这里插入图片描述

5.3 打瞌睡判断

头部姿态判断打瞌睡得到实时头部姿态的旋转角度过后,为头部旋转角度的3个参数Yaw,Pitch和Roll的示意图,驾驶员在打瞌睡时,显然头部会做类似于点头和倾斜的动作.而根据一般人的打瞌睡时表现出来的头部姿态,显然很少会在Yaw上有动作,而主要集中在Pitch和Roll的行为.设定参数阈值为0.3,在一个时间段内10
s内,当I PitchI≥20°或者|Rolll≥20°的时间比例超过0.3时,就认为驾驶员处于打瞌睡的状态,发出预警。

在这里插入图片描述

from scipy.spatial import distance as distfrom imutils.video import FileVideoStreamfrom imutils.video import VideoStreamfrom imutils import face_utilsimport numpy as np # 数据处理的库 numpyimport argparseimport imutilsimport timeimport dlibimport cv2import mathimport timefrom threading import Thread,# 世界坐标系(UVW):填写3D参考点,该模型参考http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cppobject_pts = np.float32([[6.825897, 6.760612, 4.402142],  #33左眉左上角[1.330353, 7.122144, 6.903745],  #29左眉右角[-1.330353, 7.122144, 6.903745], #34右眉左角[-6.825897, 6.760612, 4.402142], #38右眉右上角[5.311432, 5.485328, 3.987654],  #13左眼左上角[1.789930, 5.393625, 4.413414],  #17左眼右上角[-1.789930, 5.393625, 4.413414], #25右眼左上角[-5.311432, 5.485328, 3.987654], #21右眼右上角[2.005628, 1.409845, 6.165652],  #55鼻子左上角[-2.005628, 1.409845, 6.165652], #49鼻子右上角[2.774015, -2.080775, 5.048531], #43嘴左上角[-2.774015, -2.080775, 5.048531],#39嘴右上角[0.000000, -3.116408, 6.097667], #45嘴中央下角[0.000000, -7.415691, 4.070434]])#6下巴角# 相机坐标系(XYZ):添加相机内参K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,0.0, 0.0, 1.0]# 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]# 像素坐标系(xy):填写凸轮的本征和畸变系数cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)# 重新投影3D点的世界坐标轴以验证结果姿势reprojectsrc = np.float32([[10.0, 10.0, 10.0],[10.0, 10.0, -10.0],[10.0, -10.0, -10.0],[10.0, -10.0, 10.0],[-10.0, 10.0, 10.0],[-10.0, 10.0, -10.0],[-10.0, -10.0, -10.0],[-10.0, -10.0, 10.0]])# 绘制正方体12轴line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],[4, 5], [5, 6], [6, 7], [7, 4],[0, 4], [1, 5], [2, 6], [3, 7]]def get_head_pose(shape):# 头部姿态估计# (像素坐标集合)填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/# 17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/# 45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],shape[39], shape[42], shape[45], shape[31], shape[35],shape[48], shape[54], shape[57], shape[8]])# solvePnP计算姿势——求解旋转和平移矩阵:# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)# projectPoints重新投影误差:原2d点和重投影2d点的距离(输入3d点、相机内参、相机畸变、r、t,输出重投影2d点)reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix,dist_coeffs)reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))# 以8行2列显示# 计算欧拉角calc euler angle# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrixrotation_mat, _ = cv2.Rodrigues(rotation_vec)#罗德里格斯公式(将旋转矩阵转换为旋转向量)pose_mat = cv2.hconcat((rotation_mat, translation_vec))# 水平拼接,vconcat垂直拼接# decomposeProjectionMatrix将投影矩阵分解为旋转矩阵和相机矩阵_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)pitch, yaw, roll = [math.radians(_) for _ in euler_angle]pitch = math.degrees(math.asin(math.sin(pitch)))roll = -math.degrees(math.asin(math.sin(roll)))yaw = math.degrees(math.asin(math.sin(yaw)))print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))return reprojectdst, euler_angle# 投影误差,欧拉角def eye_aspect_ratio(eye):# 垂直眼标志(X,Y)坐标A = dist.euclidean(eye[1], eye[5])# 计算两个集合之间的欧式距离B = dist.euclidean(eye[2], eye[4])# 计算水平之间的欧几里得距离# 水平眼标志(X,Y)坐标C = dist.euclidean(eye[0], eye[3])# 眼睛长宽比的计算ear = (A + B) / (2.0 * C)# 返回眼睛的长宽比return eardef mouth_aspect_ratio(mouth):# 嘴部A = np.linalg.norm(mouth[2] - mouth[9])  # 51, 59B = np.linalg.norm(mouth[4] - mouth[7])  # 53, 57C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55mar = (A + B) / (2.0 * C)return mar# 定义常数# 眼睛长宽比# 闪烁阈值EYE_AR_THRESH = 0.2EYE_AR_CONSEC_FRAMES = 3# 打哈欠长宽比# 闪烁阈值MAR_THRESH = 0.5MOUTH_AR_CONSEC_FRAMES = 3# 瞌睡点头HAR_THRESH = 0.3NOD_AR_CONSEC_FRAMES = 3# 初始化帧计数器和眨眼总数COUNTER = 0TOTAL = 0# 初始化帧计数器和打哈欠总数mCOUNTER = 0mTOTAL = 0# 初始化帧计数器和点头总数hCOUNTER = 0hTOTAL = 0# 初始化DLIB的人脸检测器(HOG),然后创建面部标志物预测print("[INFO] loading facial landmark predictor...")# 第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器detector = dlib.get_frontal_face_detector()# 第二步:使用dlib.shape_predictor获得脸部特征位置检测器predictor = dlib.shape_predictor('D:/myworkspace/JupyterNotebook/fatigue_detecting/model/shape_predictor_68_face_landmarks.dat')# 第三步:分别获取左右眼面部标志的索引(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"](rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"](mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]# 第四步:打开cv2 本地摄像头cap = cv2.VideoCapture(0)# 从视频流循环帧while True:# 第五步:进行循环,读取图片,并对图片做维度扩大,并进灰度化ret, frame = cap.read()frame = imutils.resize(frame, width=720)gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 第六步:使用detector(gray, 0) 进行脸部位置检测rects = detector(gray, 0)# 第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息for rect in rects:shape = predictor(gray, rect)# 第八步:将脸部特征信息转换为数组array的格式shape = face_utils.shape_to_np(shape)# 第九步:提取左眼和右眼坐标leftEye = shape[lStart:lEnd]rightEye = shape[rStart:rEnd]# 嘴巴坐标mouth = shape[mStart:mEnd]        # 第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EARleftEAR = eye_aspect_ratio(leftEye)rightEAR = eye_aspect_ratio(rightEye)ear = (leftEAR + rightEAR) / 2.0# 打哈欠mar = mouth_aspect_ratio(mouth)# 第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作leftEyeHull = cv2.convexHull(leftEye)rightEyeHull = cv2.convexHull(rightEye)cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)mouthHull = cv2.convexHull(mouth)cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 1)# 第十二步:进行画图操作,用矩形框标注人脸left = rect.left()top = rect.top()right = rect.right()bottom = rect.bottom()cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 1)    '''分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动'''# 第十三步:循环,满足条件的,眨眼次数+1if ear < EYE_AR_THRESH:# 眼睛长宽比:0.2COUNTER += 1else:# 如果连续3次都小于阈值,则表示进行了一次眨眼活动if COUNTER >= EYE_AR_CONSEC_FRAMES:# 阈值:3TOTAL += 1# 重置眼帧计数器COUNTER = 0# 第十四步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示cv2.putText(frame, "Faces: {}".format(len(rects)), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)     cv2.putText(frame, "COUNTER: {}".format(COUNTER), (150, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "Blinks: {}".format(TOTAL), (450, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)'''计算张嘴评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示打了一次哈欠,同一次哈欠大约在3帧'''# 同理,判断是否打哈欠    if mar > MAR_THRESH:# 张嘴阈值0.5mCOUNTER += 1cv2.putText(frame, "Yawning!", (10, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)else:# 如果连续3次都小于阈值,则表示打了一次哈欠if mCOUNTER >= MOUTH_AR_CONSEC_FRAMES:# 阈值:3mTOTAL += 1# 重置嘴帧计数器mCOUNTER = 0cv2.putText(frame, "COUNTER: {}".format(mCOUNTER), (150, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "MAR: {:.2f}".format(mar), (300, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.putText(frame, "Yawning: {}".format(mTOTAL), (450, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)"""瞌睡点头"""# 第十五步:获取头部姿态reprojectdst, euler_angle = get_head_pose(shape)har = euler_angle[0, 0]# 取pitch旋转角度if har > HAR_THRESH:# 点头阈值0.3hCOUNTER += 1else:# 如果连续3次都小于阈值,则表示瞌睡点头一次if hCOUNTER >= NOD_AR_CONSEC_FRAMES:# 阈值:3hTOTAL += 1# 重置点头帧计数器hCOUNTER = 0# 绘制正方体12轴for start, end in line_pairs:cv2.line(frame, reprojectdst[start], reprojectdst[end], (0, 0, 255))# 显示角度结果cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (10, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 255, 0), thickness=2)# GREENcv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (150, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (255, 0, 0), thickness=2)# BLUEcv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (300, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)# RED    cv2.putText(frame, "Nod: {}".format(hTOTAL), (450, 90),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)# 第十六步:进行画图操作,68个特征点标识for (x, y) in shape:cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)print('嘴巴实时长宽比:{:.2f} '.format(mar)+"\t是否张嘴:"+str([False,True][mar > MAR_THRESH]))print('眼睛实时长宽比:{:.2f} '.format(ear)+"\t是否眨眼:"+str([False,True][COUNTER>=1]))# 确定疲劳提示:眨眼50次,打哈欠15次,瞌睡点头15次if TOTAL >= 50 or mTOTAL>=15 or hTOTAL>=15:cv2.putText(frame, "SLEEP!!!", (100, 200),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 3)# 按q退出cv2.putText(frame, "Press 'q': Quit", (20, 500),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)# 窗口显示 show with opencvcv2.imshow("Frame", frame)# if the `q` key was pressed, break from the loopif cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头 release cameracap.release()# do a bit of cleanupcv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

6 基于CNN与SVM的疲劳检测方法

6.1 网络结构

学长将卷积神经网络作为特征提取器, 支持向量机作为分类识别器并通过串联将两者结合 , 构造理想的深度识别模型, 提高对驾驶员疲劳的识别准确率。
本次课题主要以实现提高识别精度为目的, 设计使用的特征提取网络结构中卷积层、 池化层以及全连接层个数均为两层;
在网络的结尾处添加一层支持向量机作为识别分类器;

在这里插入图片描述
根据对卷积神经网络的描述, 这里设计使用的网络结构为: 输入层、 二层卷积层、 二层池化层、 二层全连接层以及 SVM
分类器组成的卷积神经网络对采集数据进行实验。

可将网络视为三个部分, 数据输入部分即网络输入层, 为特征提取部分由卷积层和池化层构成, SVM 为分类识别部分; 三部分网络串联出整体识别框架,
且相互间约束不大, 为后续优化工作提供了条件。

6.2 疲劳图像分类训练

网络的训练由于数据量较大进行实验时将数据分为多个批次, 每个批次中含有 20张图像, 经过前向、 反向传播后更新网络参数, 训练出误差合适的网络。 测试时,
图像由网络进行识别, 根据得到的识别正确率来验证网络的可行性。

在这里插入图片描述

疲劳驾驶检测需对网络进行训练, 在保证网络训练准确率达到一定精度后即可对图像进行判别; 疲劳驾驶网络训练算法过程如下:

  • Step1: 网络初始化: 初始化网络学习率η, 在数值范围[0, 1]中随机初始化网络参数权值及偏置值; 设置网络结构: 卷积核大小为 5×5, 每批次样本数量 20;
  • Step2: 随机选择数据库内面部表情图像并依次输入网络, 网络按照送入每一批次的图像进行训练;
  • Step3: 网络将训练得到的输出值同图像期望值进行比较, 计算出输出误差;
  • Step4: 根据反向传播原理将误差反向传播计算, 并调整网络参数权值和偏置值;
  • Step5: 判断迭代次数, 达到期望的迭代步数后转到 Step6, 否则转到 Step3;
  • Step6: 将 CNN 提取到的图像特征传入 SVM 中进行训练;
  • Step7: 结束。

6.3 训练结果

学长将对建立起的数据集进行实验, 实验中分别在每一批次下对识别正确和错误个数进行统计, 然后同批次中图片数量相比, 得出最终的准确率和损失率(错误率) 。

在这里插入图片描述
在这里插入图片描述

模型测试结果

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/94277.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

angularjs开发环境搭建

Angularjs是一个前端页面应用开发框架&#xff0c;其使用TypeScript作为开发语言&#xff0c;Angularjs的特性包括&#xff0c;使用组件、模板以及依赖注入的开发框架构建可扩展的web应用&#xff0c;使用易于集成的类库支持页面路由、页面表单、前后端接口交互等各种不同特性&…

JVM:经典垃圾收集器

经典垃圾收集器 如果说收集算法是内存回收的方法论&#xff0c;那垃圾收集器就是内存回收的实践者 《Java虚拟机规范》中对垃圾收集器应该如何实现并没有做出任何规定&#xff0c;因此不同的厂商、不同版本的虚拟机所包含的垃圾收集器都可能会有很大差别&#xff0c;不同的虚拟…

【Java】微服务——Nacos注册中心

目录 1.Nacos快速入门1.1.服务注册到nacos1&#xff09;引入依赖2&#xff09;配置nacos地址3&#xff09;重启 2.服务分级存储模型2.1.给user-service配置集群2.2.同集群优先的负载均衡 3.权重配置4.环境隔离4.1.创建namespace4.2.给微服务配置namespace 5.Nacos与Eureka的区别…

Day 04 python学习笔记

Python数据容器 元组 元组的声明 变量名称&#xff08;元素1&#xff0c;元素2&#xff0c;元素3&#xff0c;元素4…….&#xff09; &#xff08;元素类型可以不同&#xff09; eg: tuple_01 ("hello", 1, 2,-20,[11,22,33]) print(type(tuple_01))结果&#x…

uniapp实现微信小程序隐私协议组件封装

uniapp实现微信小程序隐私协议组件封装。 <template><view class"diygw-modal basic" v-if"showPrivacy" :class"showPrivacy?show:" style"z-index: 1000000"><view class"diygw-dialog diygw-dialog-modal bas…

求各区域热门商品Top3 - HiveSQL

背景&#xff1a;这是尚硅谷SparkSQL练习题&#xff0c;本文用HiveSQL进行了实现。 数据集&#xff1a;用户点击表&#xff0c;商品表&#xff0c;城市表 题目: ① 求每个地区点击量前三的商品&#xff1b; ② 在①的基础上&#xff0c;求出每个地区点击量前三的商品后&a…

MySQL-MVCC(Multi-Version Concurrency Control)

MySQL-MVCC&#xff08;Multi-Version Concurrency Control&#xff09; MVCC&#xff08;多版本并发控制&#xff09;&#xff1a;为了解决数据库并发读写和数据一致性的问题&#xff0c;是一种思想&#xff0c;可以有多种实现方式。 核心思想&#xff1a;写入时创建行的新版…

Windows安装Docker并创建Ubuntu环境及运行神经网络模型

目录 前言在Windows上安装Docker在Docker上创建Ubuntu镜像并运行容器创建Ubuntu镜像配置容器&#xff0c;使其可以在宿主机上显示GUI 创建容器并运行神经网络模型创建容器随便找一个神经网络模型试试 总结 前言 学生党一般用个人电脑玩神经网络&#xff0c;估计很少有自己的服…

TouchGFX之后端通信

在大多数应用中&#xff0c;UI需以某种方式连接到系统的其余部分&#xff0c;并发送和接收数据。 它可能会与硬件外设&#xff08;传感器数据、模数转换和串行通信等&#xff09;或其他软件模块进行交互通讯。 Model类​ 所有TouchGFX应用都有Model类&#xff0c;Model类除了存…

【计算机】CPU,芯片以及操作系统概述

1.CPU 什么是CPU? CPU&#xff08;Central Processing Unit&#xff09;是计算机系统的运算和控制核心&#xff0c;是信息处理、程序运行的最终执行单元&#xff0c;相当于系统的“大脑”。 CPU的工作流程&#xff1f; CPU 的工作流程分为以下 5 个阶段&#xff1a;取指令…

苹果ios系统ipa文件企业签名是什么?优势是什么?什么场合需要应用到?

企业签名是苹果开发者计划中的一种签名类型&#xff0c;允许企业开发者签署和分发企业内部使用的应用程序&#xff0c;而无需通过App Store进行公开发布。通过企业签名&#xff0c;企业可以在内部部署自己的应用程序&#xff0c;以满足特定的业务需求。 企业签名能够做到以下…

【JVM】 类加载机制、类加载器、双亲委派模型详解

文章目录 前言一、类加载机制二、类加载器三、双亲委派模型总结 前言 &#x1f4d5;各位读者好, 我是小陈, 这是我的个人主页 &#x1f4d7;小陈还在持续努力学习编程, 努力通过博客输出所学知识 &#x1f4d8;如果本篇对你有帮助, 烦请点赞关注支持一波, 感激不尽 &#x1f4d…

【改进哈里鹰算法(NCHHO)】使用混沌和非线性控制参数来提高哈里鹰算法的优化性能,解决车联网相关的路由问题(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

嵌入式Linux应用开发-驱动大全-同步与互斥①

嵌入式Linux应用开发-驱动大全-同步与互斥① 第一章 同步与互斥①1.1 内联汇编1.1.1 C语言实现加法1.1.2 使用汇编函数实现加法1.1.3 内联汇编语法1.1.4 编写内联汇编实现加法1.1.5 earlyclobber的例子 1.2 同步与互斥的失败例子1.2.1 失败例子11.2.2 失败例子21.2.3 失败例子3…

互联网Java工程师面试题·MyBatis 篇·第二弹

目录 16、Xml 映射文件中&#xff0c;除了常见的 select|insert|updae|delete标签之外&#xff0c;还有哪些标签&#xff1f; 17、Mybatis 的 Xml 映射文件中&#xff0c;不同的 Xml 映射文件&#xff0c;id 是否可以重复&#xff1f; 18、为什么说 Mybatis 是半自动 ORM 映射…

2023年中国体育赛事行业现状及趋势分析:体育与科技逐步融合,推动产业高质量发展[图]

体育赛事运营是指组织体育赛事或获取赛事版权&#xff0c;并进行赛事推广营销、运营管理等一系列商业运作的运营活动。体育赛事运营相关业务主要包括赛事运营与营销、赛事版权运营两个部分。 体育赛事运营行业分类 资料来源&#xff1a;共研产业咨询&#xff08;共研网&#x…

5.外部中断

中断初始化配置步骤&#xff1a; IO口初始化配置 开启中断总允许EA 打开某个IO口的中断允许 打开IO口的某一位的中断允许 配置该位的中断触发方式 中断函数&#xff1a; #pragma vector PxINT_VECTOR __interrupt void 函数名(void){}#pragma vector PxINT_VECTOR __int…

开源白板工具 Excalidraw 架构解读

本文讲解开源白板工具 Excalidraw 的架构设计。 版本 0.16.1 技术栈 Vite React TypeScript Yarn Husky。 脚手架原来是用的是 Create React App&#xff0c;但这个脚手架已经不维护了&#xff0c;一年多没发布新版本了。 目前市面上比较流行的 React 脚手架是 Vite&…

RabbitMQ的基本介绍

什么是MQ 本质是一个队列&#xff0c;只不过队列中存放的信息是message罢了&#xff0c;还是一种跨进程的通信机制&#xff0c;用于上下游传递信息。在互联网架构中&#xff0c;MQ是一种非常常见的上下游“逻辑解耦物理解耦”的消息通信服务。使用了MQ之后&#xff0c;信息发送…

嵌入式Linux应用开发-驱动大全-同步与互斥④

嵌入式Linux应用开发-驱动大全-同步与互斥④ 第一章 同步与互斥④1.5 自旋锁spinlock的实现1.5.1 自旋锁的内核结构体1.5.2 spinlock在UP系统中的实现1.5.3 spinlock在SMP系统中的实现 1.6 信号量semaphore的实现1.6.1 semaphore的内核结构体1.6.2 down函数的实现1.6.3 up函数的…