JVM:经典垃圾收集器

经典垃圾收集器

如果说收集算法是内存回收的方法论,那垃圾收集器就是内存回收的实践者

《Java虚拟机规范》中对垃圾收集器应该如何实现并没有做出任何规定,因此不同的厂商、不同版本的虚拟机所包含的垃圾收集器都可能会有很大差别,不同的虚拟机一般也都会提供各种参数供用户根据自己的应用特点和要求组合出各个内存分代所使用的收集器

标题中“经典”二字并非情怀,它其实是讨论范围的限定语。是JDK 11之前(2018 JDK11 发布了ZGC,但还处于实验状态,大概直到2020 年9月,JDK 15 发布,ZGC转正;2019 年的 Open JDK 12 诞生了Shenandoah),所包含的全部可用的垃圾收集器。使用“经典”二字是为了与几款当时仍处于实验状态,但执行效果上有革命性改进的高性能低延迟收集器区分开来,这些经典的收集器尽管已经算不上是最先进的技术,但它们曾在实践中千锤(chuí )百炼,足够成熟,基本上可认为是现在到未来两、三年内,能够在商用生产环境上放心使用的全部垃圾收集器了。

上图中,如果两个收集器之间存在连线,就说明它们可以搭配使用。这个关系不是一成不变的,由于维护和兼容性测试的成本,在JDK

8时将Serial+CMS、 ParNew+Serial Old这两个组合声明为废弃(JEP 173),并在JDK 9中完全取消了这些组合的支持。

说明:虽然接下来的章节会对各个收集器进行比较,但并非为了挑选一个最好的收集器出来,虽然垃圾收集器的技术在不断进步,但直到现在还没有最好的收集器出现,更加不存在“万能”的收集器,所以我们选择的只是对具体应用最合适的收集器。这点不需要多加论述就能证明:如果有一种放之四海皆准、任何场景下都适用的完美收集器存在,HotSpot虚拟机完全没必要实现那么多种不同的收集器了。

新生代垃圾收集器

都是基于基于标记-复制算法实现的收集器

Serial 收集器

标签:单线程GC、全程STW

JDK 1.0发布,在JDK 1.3.1之前是JAVA虚拟机新生代收集的唯一选择。

Serial收集器是最基础、历史最悠久的收集器。大家只看名字就能够猜到,这个收集器是一个单线程工作的收集器,但它的“单线程”的意义并不仅仅是说明它只会使用一个处理器或一条收集线程去完成垃圾收集工作,更重要的是强调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束(STW)。这对很多应用来说都是不能接受的(类比实际生活中卡顿)。

对于“Stop The World”带给用户的恶劣体验,早期HotSpot虚拟机的设计者们表示完全理解,但也同时表示非常委屈(打扫房间的例子,这确实是一个合情合理的矛盾)

到这里,可能你们会把Serial收集器描述成一个最早出现,但目前已经老而无用,食之无味,弃之可惜的“鸡肋”了,但事实上,迄今为止,它依然是HotSpot虚拟机运行在客户端模式下的默认新生代收集器,有着优于其他收集器的地方简单而高效(与其他收集器的单线程相比),怎么理解这个高校呢?

  1. 对于内存资源受限的环境,它是所有收集器里额外内存消耗最小的;
  2. 对于单核处理器或处理器核心数较少的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。在用户桌面的应用场景以及近年来流行的部分微服务应用中,分配给虚拟机管理的内存一般来说并不会特别大,收集几十兆甚至一两百兆的新生代(仅仅是指新生代使用的内存,桌面应用甚少超过这个容量),垃圾收集的停顿时间完全可以控制在十几、几十毫秒,最多一百多毫秒以内,只要不是频繁发生收集,这点停顿时间对许多用户来说是完全可以接受的。所以,Serial收集器对于运行在客户端模式下的虚拟机来说是一个很好的选择。

ParNew 收集器

标签:多线程并行gc、全程STW、JDK1.3.1 发布

ParNew收集器实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一致,在实现上这两种收集器也共用了相当多的代码。ParNew收集器的工作过程如图3-8所示。

ParNew 是JDK 7之前的遗留系统中首选的新生代收集器,其中有一个与功能、性能无关但其实很重要的原因是:除了Serial收集器外,目前只有它能与CMS收集器配合工作。

在JDK 5发布时,HotSpot推出了一款在强交互应用中几乎可称为具有划时代意义的垃圾收集器——CMS收集器。这款收集器是HotSpot虚拟机中第一款真正意义上支持并发的垃圾收集器,它首次实现了让垃圾收集线程与用户线程(基本上)同时工作。

遗憾的是,CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge(JDK1.4.2 发布)配合工作[1],所以在JDK 5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者 Serial收集器中的一个。ParNew收集器是激活CMS后(使用-XX:+UseConcMarkSweepGC选项)的默认新生代收集器,也可以使用-XX:+/-UseParNewGC选项来强制指定或者禁用它。

可以说直到CMS的出现才巩固了ParNew的地位,但成也萧何败也萧何,随着垃圾收集器技术的不断改进,更先进的G1收集器带着CMS继承者和替代者的光环登场。G1是一个面向全堆的收集器,不再需要其他新生代收集器的配合工作。所以自JDK 9开始,ParNew加CMS收集器的组合就不再是官方推荐的服务端模式下的收集器解决方案了。官方希望它能完全被G1所取代,甚至还取消了ParNew加Serial Old以及Serial加CMS这两组收集器组合的支持(其实原本也很少人这样使用),并直接取消了- XX:+UseParNewGC参数,这意味着ParNew和CMS从此只能互相搭配使用,再也没有其他收集器能够和它们配合了。读者也可以理解为从此以后,ParNew合并入CMS,成为它专门处理新生代的组成部分。ParNew可以说是HotSpot虚拟机中第一款退出历史舞台的垃圾收集器。

ParNew收集器在单核心处理器的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程(Hyper-Threading)技术实现的伪双核处理器环境中都不能百分之百保证超越Serial收集器。当然,随着可以被使用的处理器核心数量的增加,ParNew对于垃圾收集时

系统资源的高效利用还是很有好处的。它默认开启的收集线程数与处理器核心数量相同,在处理器核心非常多(譬如32个,现在CPU都是多核加超线程设计,服务器达到或超过32个逻辑核心的情况非常普遍)的环境中,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

[1] 除了一个面向低延迟一个面向高吞吐量的目标不一致外,技术上的原因是Parallel Scavenge收集器及后面提到的G1收集器等都没有使用HotSpot中原本设计的垃圾收集器的分代框架,而选择另外独立实现。Serial、ParNew收集器则共用了这部分的框架代码

Parallel Scavenge 收集器

标签:多线程并行gc、全程STW、追求吞吐量、自适应调节策略、JDK1.4.2发布

2002年2月26日,Parallel Scavenge GC和CMS GC 跟随JDK1.4.2一起发布。它的诸多特性从表面上看和ParNew非常相似,那它有什么特别之处呢?

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是处理器用于运行用户代码的时间与处理器总消耗时间的比值, 即:

停顿时间越短就越适合需要与用户交互或需要保证服务响应质量的程序,良好的响应速度能提升用户体验;而高吞吐量则可以最高效率地利用处理器资源,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的分析任务。 Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。

-XX:MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽力保证内存回收花费的时间不超过用户设定值。不过大家不要异想天开地认为如果把这个参数的值设置得更小一点就能使得系统的垃圾收集速度变得更快,垃圾收集停顿时间缩短是以牺牲吞吐量和新生代空间为代价换取的: 系统把新生代调得小一些,收集300MB新生代肯定比收集500MB快,但这也直接导致垃圾收集发生得更频繁,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间 的确在下降,但吞吐量也降下来了。

-XX:GCTimeRatio参数的值则应当是一个大于0小于100的整数,也就是垃圾收集时间占总时间的比率,相当于吞吐量的倒数。譬如把此参数设置为19,那允许的最大垃圾收集时间就占总时间的5%(即1/(1+19)),默认值为99,即允许最大1%(即1/(1+99))的垃圾收集时间。

由于与吞吐量关系密切,Parallel Scavenge收集器也经常被称作“吞吐量优先收集器”。除上述两个 参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得我们关注。这是一个开关参数,当这个参数被激活之后,就不需要人工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数 了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时 间或者最大的吞吐量。这种调节方式称为垃圾收集的自适应的调节策略。如果读者对于收集器运作不太了解,手工优化存在困难的话,使用Parallel Scavenge收集器配合自适应调节策略,把内存管理的调优任务交给虚拟机去完成也许是一个很不错的选择。只需要把基本的内存数据设置好(如-Xmx设置最大堆),然后使用-XX:MaxGCPauseMillis参数(更关注最大停顿时间)或- XX:GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器区别于ParNew收集器的一个重要特性。

老年代垃圾收集器

都是基于基于标记-清除、标记-整理算法实现的收集器

Serial Old 收集器

标签:单线程、全程STW、基于标记-整理算法

基本是在JDK 1.0 就有了的

Serial Old是Serial收集器的老年代版。这个收集器的主要意义也是供客户端模式下的HotSpot虚拟机使用。如果在服务端模式下,它也可能有两种用途:

  • 一种是在JDK 5以及之前的版本中与Parallel Scavenge收集器搭配使用(所以现在一般不会这么搭配了?)
  • 另外一种就是作为CMS收集器发生失败时的后备预案,在并发收集发生Concurrent Mode Failure时使用。这两点都将在后面的内容中继续讲解。

Parallel Old 收集器

多线程并行gc、全程STW、追求吞吐量、基于标记-整理算法、JDK1.6 发布

JDK1.6 发布, Parallel GC在JDK6之后成为HotSpot默认GC

Parallel Old 是 Parallel Scavenge收集器的老年代版本。这个收集器是直到JDK 6时才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于相当尴尬的状态,原因是如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old收集器以外别无选择,其他表现良好的老年代收集器,如CMS无法与它配合工作。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用Parallel Scavenge收集器也未必能在整体上获得吞吐量最大化的效果。同样,由于单线程的老年代收集中无法充分利用服务器多处理器的并行处理能力,在老年代内存空间很大而且硬件规格比较高级的运行环境中,这种组合的总吞吐量甚至不一 定比ParNew加CMS的组合来得优秀。 直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重吞吐量或者处理器资源较为稀缺的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器这个组合。

CMS 收集器

标签:第一款并发gc、低停顿、基于标记-清除算法

2002年2月26日,CMS GC 跟随JDK1.4.2一起发布,在jdk5和jdk6中得到了进一步改进。

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求。

从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:

1)初始标记(CMS initial mark)

2)并发标记(CMS concurrent mark)

3)重新标记(CMS remark)

4)并发清除(CMS concurrent sweep

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快;并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录(详见3.4.6节中关于增量更新的讲解),这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。

由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过图3-11可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的阶段。

CMS是一款优秀的收集器,它最主要的优点在名字上已经体现出来:并发收集、低停顿,一些官方公开文档里面也称之为“并发低停顿收集器”(Concurrent Low Pause Collector)。CMS收集器是HotSpot虚拟机追求低停顿的第一次成功尝试,但是它还远达不到完美的程度,至少有以下三个明显的缺点:

  1. 首先,CMS收集器对处理器资源非常敏感。事实上,面向并发设计的程序都对处理器资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程(或者说处理器的计算能力)而导致应用程序变慢,降低总吞吐量。CMS默认启动的回收线程数是(处理器核心数量+3)/4,也就是说,如果处理器核心数在四个或以上,并发回收时垃圾收集线程只占用不超过25%的 处理器运算资源,并且会随着处理器核心数量的增加而下降。但是当处理器核心数量不足四个时, CMS对用户程序的影响就可能变得很大。如果应用本来的处理器负载就很高,还要分出一半的运算能 力去执行收集器线程,就可能导致用户程序的执行速度忽然大幅降低。为了缓解这种情况,虚拟机提 供了一种称为“增量式并发收集器”(Incremental Concurrent Mark Sweep/i-CMS)的CMS收集器变种, 所做的事情和以前单核处理器年代PC机操作系统靠抢占式多任务来模拟多核并行多任务的思想一样, 是在并发标记、清理的时候让收集器线程、用户线程交替运行,尽量减少垃圾收集线程的独占资源的 时间,这样整个垃圾收集的过程会更长,但对用户程序的影响就会显得较少一些,直观感受是速度变 慢的时间更多了,但速度下降幅度就没有那么明显。实践证明增量式的CMS收集器效果很一般,从 JDK 7开始,i-CMS模式已经被声明为“deprecated”,即已过时不再提倡用户使用,到JDK 9发布后i- CMS模式被完全废弃。

  2. 然后,由于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但这一部分垃圾对象是出现在标记过程结束以后,CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集时再清理掉。这一部分垃圾就称为“浮动垃圾”。同样也是由于在垃圾收集阶段用户线程还需要持续运 行,那就还需要预留足够内存空间提供给用户线程使用,因此CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。在JDK 5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在实际应用中老年代增长并不是太快,可以适当调高参数-XX:CMSInitiatingOccu-pancyFraction的值 来提高CMS的触发百分比,降低内存回收频率,获取更好的性能。到了JDK 6时,CMS收集器的启动阈值就已经默认提升至92%。但这又会更容易面临另一种风险:要是CMS运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent Mode Failure),这时候虚拟机将不得不启动后备预案:冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集, 但这样停顿时间就很长了。所以参数-XX:CMSInitiatingOccupancyFraction设置得太高将会很容易导致大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置。

  3. 还有最后一个缺点,在本节的开头曾提到,CMS是一款基于“标记-清除”算法实现的收集器,如果读者对前面这部分介绍还有印象的话,就可能想到这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很多剩余空间,但就是无法找到足够大的连续空间来分配当前对象,而不得不提前触发一次Full GC的情况。为了解决这个问题, CMS收集器提供了一个-XX:+UseCMS-CompactAtFullCollection开关参数(默认是开启的,此参数从JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX:CMSFullGCsBefore-Compaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量 由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/94275.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java】微服务——Nacos注册中心

目录 1.Nacos快速入门1.1.服务注册到nacos1)引入依赖2)配置nacos地址3)重启 2.服务分级存储模型2.1.给user-service配置集群2.2.同集群优先的负载均衡 3.权重配置4.环境隔离4.1.创建namespace4.2.给微服务配置namespace 5.Nacos与Eureka的区别…

Day 04 python学习笔记

Python数据容器 元组 元组的声明 变量名称(元素1,元素2,元素3,元素4…….) (元素类型可以不同) eg: tuple_01 ("hello", 1, 2,-20,[11,22,33]) print(type(tuple_01))结果&#x…

uniapp实现微信小程序隐私协议组件封装

uniapp实现微信小程序隐私协议组件封装。 <template><view class"diygw-modal basic" v-if"showPrivacy" :class"showPrivacy?show:" style"z-index: 1000000"><view class"diygw-dialog diygw-dialog-modal bas…

求各区域热门商品Top3 - HiveSQL

背景&#xff1a;这是尚硅谷SparkSQL练习题&#xff0c;本文用HiveSQL进行了实现。 数据集&#xff1a;用户点击表&#xff0c;商品表&#xff0c;城市表 题目: ① 求每个地区点击量前三的商品&#xff1b; ② 在①的基础上&#xff0c;求出每个地区点击量前三的商品后&a…

MySQL-MVCC(Multi-Version Concurrency Control)

MySQL-MVCC&#xff08;Multi-Version Concurrency Control&#xff09; MVCC&#xff08;多版本并发控制&#xff09;&#xff1a;为了解决数据库并发读写和数据一致性的问题&#xff0c;是一种思想&#xff0c;可以有多种实现方式。 核心思想&#xff1a;写入时创建行的新版…

Windows安装Docker并创建Ubuntu环境及运行神经网络模型

目录 前言在Windows上安装Docker在Docker上创建Ubuntu镜像并运行容器创建Ubuntu镜像配置容器&#xff0c;使其可以在宿主机上显示GUI 创建容器并运行神经网络模型创建容器随便找一个神经网络模型试试 总结 前言 学生党一般用个人电脑玩神经网络&#xff0c;估计很少有自己的服…

TouchGFX之后端通信

在大多数应用中&#xff0c;UI需以某种方式连接到系统的其余部分&#xff0c;并发送和接收数据。 它可能会与硬件外设&#xff08;传感器数据、模数转换和串行通信等&#xff09;或其他软件模块进行交互通讯。 Model类​ 所有TouchGFX应用都有Model类&#xff0c;Model类除了存…

【计算机】CPU,芯片以及操作系统概述

1.CPU 什么是CPU? CPU&#xff08;Central Processing Unit&#xff09;是计算机系统的运算和控制核心&#xff0c;是信息处理、程序运行的最终执行单元&#xff0c;相当于系统的“大脑”。 CPU的工作流程&#xff1f; CPU 的工作流程分为以下 5 个阶段&#xff1a;取指令…

苹果ios系统ipa文件企业签名是什么?优势是什么?什么场合需要应用到?

企业签名是苹果开发者计划中的一种签名类型&#xff0c;允许企业开发者签署和分发企业内部使用的应用程序&#xff0c;而无需通过App Store进行公开发布。通过企业签名&#xff0c;企业可以在内部部署自己的应用程序&#xff0c;以满足特定的业务需求。 企业签名能够做到以下…

【JVM】 类加载机制、类加载器、双亲委派模型详解

文章目录 前言一、类加载机制二、类加载器三、双亲委派模型总结 前言 &#x1f4d5;各位读者好, 我是小陈, 这是我的个人主页 &#x1f4d7;小陈还在持续努力学习编程, 努力通过博客输出所学知识 &#x1f4d8;如果本篇对你有帮助, 烦请点赞关注支持一波, 感激不尽 &#x1f4d…

【改进哈里鹰算法(NCHHO)】使用混沌和非线性控制参数来提高哈里鹰算法的优化性能,解决车联网相关的路由问题(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

嵌入式Linux应用开发-驱动大全-同步与互斥①

嵌入式Linux应用开发-驱动大全-同步与互斥① 第一章 同步与互斥①1.1 内联汇编1.1.1 C语言实现加法1.1.2 使用汇编函数实现加法1.1.3 内联汇编语法1.1.4 编写内联汇编实现加法1.1.5 earlyclobber的例子 1.2 同步与互斥的失败例子1.2.1 失败例子11.2.2 失败例子21.2.3 失败例子3…

互联网Java工程师面试题·MyBatis 篇·第二弹

目录 16、Xml 映射文件中&#xff0c;除了常见的 select|insert|updae|delete标签之外&#xff0c;还有哪些标签&#xff1f; 17、Mybatis 的 Xml 映射文件中&#xff0c;不同的 Xml 映射文件&#xff0c;id 是否可以重复&#xff1f; 18、为什么说 Mybatis 是半自动 ORM 映射…

2023年中国体育赛事行业现状及趋势分析:体育与科技逐步融合,推动产业高质量发展[图]

体育赛事运营是指组织体育赛事或获取赛事版权&#xff0c;并进行赛事推广营销、运营管理等一系列商业运作的运营活动。体育赛事运营相关业务主要包括赛事运营与营销、赛事版权运营两个部分。 体育赛事运营行业分类 资料来源&#xff1a;共研产业咨询&#xff08;共研网&#x…

5.外部中断

中断初始化配置步骤&#xff1a; IO口初始化配置 开启中断总允许EA 打开某个IO口的中断允许 打开IO口的某一位的中断允许 配置该位的中断触发方式 中断函数&#xff1a; #pragma vector PxINT_VECTOR __interrupt void 函数名(void){}#pragma vector PxINT_VECTOR __int…

开源白板工具 Excalidraw 架构解读

本文讲解开源白板工具 Excalidraw 的架构设计。 版本 0.16.1 技术栈 Vite React TypeScript Yarn Husky。 脚手架原来是用的是 Create React App&#xff0c;但这个脚手架已经不维护了&#xff0c;一年多没发布新版本了。 目前市面上比较流行的 React 脚手架是 Vite&…

RabbitMQ的基本介绍

什么是MQ 本质是一个队列&#xff0c;只不过队列中存放的信息是message罢了&#xff0c;还是一种跨进程的通信机制&#xff0c;用于上下游传递信息。在互联网架构中&#xff0c;MQ是一种非常常见的上下游“逻辑解耦物理解耦”的消息通信服务。使用了MQ之后&#xff0c;信息发送…

嵌入式Linux应用开发-驱动大全-同步与互斥④

嵌入式Linux应用开发-驱动大全-同步与互斥④ 第一章 同步与互斥④1.5 自旋锁spinlock的实现1.5.1 自旋锁的内核结构体1.5.2 spinlock在UP系统中的实现1.5.3 spinlock在SMP系统中的实现 1.6 信号量semaphore的实现1.6.1 semaphore的内核结构体1.6.2 down函数的实现1.6.3 up函数的…

用于工业物联网和自动化的 Apache Kafka、KSQL 和 Apache PLC4

由于单一系统和专有协议&#xff0c;数据集成和处理是工业物联网&#xff08;IIoT&#xff0c;又名工业 4.0 或自动化工业&#xff09;中的巨大挑战。Apache Kafka、其生态系统&#xff08;Kafka Connect、KSQL&#xff09;和 Apache PLC4X 是以可扩展、可靠和灵活的方式实现端…

【文献阅读】Pocket2Mol : 基于3D蛋白质口袋的高效分子采样 + CrossDocked数据集说明

Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets code&#xff1a; GitHub - pengxingang/Pocket2Mol: Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets 所用数据集 与“A 3D Generative Model for Structure-Based Drug Desi…