百度智能云连拿四年第一,为什么要深耕AI公有云市场

3a26f2bd69dabc610f2c913a70bc4739.jpeg

AI是过去几年云计算市场中的最大变量,而大模型的成熟,毫无疑问将指数级增强这个变量。

记得在2022年年底,生成式AI与大模型开始爆火的时候,我们就曾讨论过一个问题:这轮AI浪潮中,最先受到深刻影响的将是云计算市场。

这是因为大模型数据规模大、训练成本大、更新频繁等一系列特点,必然导致最好的应用方式就是基于公有云来接入用户界面。而随着大模型在产业智能化进程中扎稳脚跟,扮演的角色愈发重要,作为大模型策源地的公有云平台价值也将极大提升。

目前来看,这一判断正在逐步变为现实。具体表现为AI公有云的增长正在加快;大模型开始撬动新一轮的云计算产业变革;具有大模型技术与应用优势的云计算厂商,领先身位正持续扩大。

7765fbe12c66d7b9c331c30715eb046e.png

(图表来自IDC咨询)

IDC在近日发布了《IDC中国AI公有云服务市场份额2022》报告。报告显示,2022年中国AI公有云服务市场增速达到80.6%。其中百度智能云市场份额占比第一,增速达到了69.7%。这也是百度智能云连续四年、第八次在这一市场排名第一。

d156ec72a3e4d3584621e8497e3e203d.png

(图表来自IDC咨询)

我们知道,机器视觉CV与自然语言处理NLP是AI技术目前最核心的两大支柱。而在AI公有云版图中,百度智能云在CV与NLP两大市场同样位列第一。伴随着文心大模型取得显著成功,有理由相信百度智能云2023年将会在AI公有云市场中取得更大进展。

de68bf6911cb1aa3da0d8dd0539c92a6.png

(图表来自IDC咨询)

IDC这份报告之所以重要,不仅是因为它总结了此前的市场结构,更在于其非常清晰、笃定地展示了未来。

为什么这样说?大模型将给云计算市场带来什么?百度智能云在AI公有云市场的成功,可以给云计算厂商、用户、相关产业链与投资者带来哪些参考意义?

让我们带着这些问题,一起透过IDC报告,读懂正在到来的“大模型+云”新时代。

AI公有云

云计算重回高增长的主航道

90c03ce18d2ab2aea7800782d3b060fe.png

想要预判大模型给云计算带来的变化,首先要清楚AI公有云所扮演的角色。

整体而言,目前阶段公有云处在发展放缓,行业压力不断增大的发展周期当中。根据数据显示,2022年中国公有云增速仅仅为35.4%,同比2021年下降了7.8%。行业普遍面临增速放缓,盈利压力大,缺乏产业支点等一系列问题。

这种情况下,找到持续、稳健的高增长窗口,就成为了云计算产业最为重要的任务,而AI公有云经过多年的发展,可以说已经证明了自身作为云计算行业新支点的可行性。

就像上文所说,根据IDC数据报告显示,2022年中国AI公有云服务市场增速达到80.6%,环比整个公有云版图,这样的增长速度是十分罕见的。更为重要的是,AI公有云不会仅仅作为短期风口而存在。

8501bbdec5fc51a1f217674d28b699ca.png

从技术上看,云厂商最具备生成式AI、大模型的技术底座。这些处在起步阶段的技术能力,受到着包括社会舆论、政策导向、投资建设等方面的强烈关注,会给云计算厂商带来极大的发展动力与发展空间。从商业上看,训练AI模型、部署AI模型、获取AI解决方案与综合服务都需要依靠公有云模式来实现,这将极大丰富公有云的商业化路径,从而让云计算厂商有更多方法解决盈利这个最关键问题。可以说,随着智能化在产业中扮演角色的不断加强,AI公有云的升级是不可逆的。

IDC认为,未来5年,大模型、生成式 AI驱动的下一代人工智能有望带动整体产业重回高增长时代。

在这一趋势下,AI公有云将凭借大模型的价值逐渐成为公有云市场的核心,进而演化成云计算重回高增长阶段的主航道,而连续多年在这一领域夺魁的百度智能云,也将率先获得启动持续高速增长的机会。

在这样的趋势下,AI公有云接下来的爆点就是大模型。如何打造适配用户需求的大模型能力与落地方案,将成为云计算厂商接下来的主要赛点。

4db22b425eee3480c4a50a50e72f8570.png

大底座,广应用

大模型+云时代的落地方案

大模型是AI公有云,乃至云计算产业整体变革的关键。我们需要注意,上文引述的IDC统计数据来自2022年,而今年的情况是,大模型应用需求急剧增加,各行业云用户对大模型的了解与认可快速升温,这势必导致具有大模型优势的云计算厂商优势进一步扩大。

在不久之前举办的2023年世界人工智能大会(WAIC)期间,由国家标准委指导的国家人工智能标准化总体组正式宣布启动大模型测试国家标准制订,百度等科技企业进入了大模型“国家队”。

从国家标准化工作的推进,以及更多AI产业的最新动向中,不难发现大模型正在快速向标准化、底座化、强应用的新方向发展。从与云计算市场的衔接来看,通过公有云获取大模型更加有利于大模型标准化的实现。大模型用云量更大,需要在云上获取的服务与支持更加复杂,演化出的MaaS等商业模式更加多样,因此大模型的发展,将极大刺激云计算产业的快速提升。大模型+云,将成为接下来产业智能化的主要实现方式,以及云计算市场的核心价值来源。

在大模型+云的新阶段,“大模型强则云强”的逻辑将愈发明显。由于大模型的训练、调参、持续升级成本极大,用户重复打造大模型的意义将越来越低。因此使用成熟大模型,搭配数据微调、行业落地方案制订的方法,将成为大模型+云的主要落地方案。IDC报告中也认为,企业未来更多会直接利用市场上已有的通用大模型。

c5de8369a4b7d5ad34ca74ea03f1eb64.png

这也就是说,大模型+云的时代将很快呈现出少量大模型底座,搭配广泛应用方向、多样性行业落地通道的结构。这种情况下,作为底座的通用大模型技术一定要经得起考验。

比如说,百度文心大模型已升级至3.5版本,与3月份的3.0版本相比,训练速度提升了2倍,推理速度提升了30倍。多项公开权威测评显示,由文心大模型3.5支持的文心一言综合能力评测得分已经超过ChatGPT,遥遥领先其他大模型,部分中文能力甚至超过了GPT-4。大模型+云时代,是大底座+广应用的时代,如何让大模型底座构建起通向应用的桥梁,也将成为云计算新阶段中最为重要的能力。

横纵两个切面

决定未来格局

4e37ff961419a8165f01092f19d8145d.png

大模型将推动AI公有云实现指数级发展,而云厂商想要在未来五年这个关键变化周期中,争夺到产业智能化底座这个关键席位,主要依靠两个方面的能力。

我们可以将决定公有云市场未来变化的AI能力,理解为一横一纵两个切面。横向的能力是要拉通技术底座,构建出满分体验的大模型能力。纵向则需要真正打开大模型与AI技术通往产业的道路,确保大模型不是悬浮于产业之外。

9a6e69824fd61dd1d164cc0f173c4797.jpeg

我们可以看到,百度智能云能够连续四年蝉联AI公有云市场冠军,坚持横纵双切面同步发展是其成功的关键。根据IDC 发布的《AI 大模型技术能力评估报告,2023》显示,百度文心大模型 3.5 拿下了12 项核心指标的 7 个满分,综合评分位列国内主流大模型第一。其中,“算法模型”和“行业覆盖”两大指标,是衡量大模型技术深度、产业覆盖广度最重要的指标,百度文心大模型是唯一在这两项关键指标上获得满分的大模型。

文心大模型的优势,也可以完整对齐到百度智能云所具备的优势上来。首先从横向来看,百度智能云集成了百度在AI领域的全栈技术优势,实现了从自研芯片、自研框架到AI解决方案的优势打通,并且在AI算法层面不断突破,积累自身的软件技术优势。

而从纵向来看,大模型进入行业需要面对复杂的场景与需求。百度智能云通过持续的案例打造与行业探索,不断从共性平台与行业服务等多方面塑造自身的行业智能化能力。

举个例子,机床行业是重型工业的代表,向来被认为较为是典型的传统行业,但百度智能云,已经将AI能力带入了这样的领域。在济南二机床,通过应用百度智能云的AI智能调度优化引擎,其调度能力得到了极大提升,解决了此前排产调度环节排班强度大、耗时久等挑战,排产调度情况得到了明显改善。

在工业、能源、金融、政务等诸多领域,百度智能云都将AI与大模型的能力带到了远超外界预期的高度。为了满足产业用户的AI需求,百度还推出了文心千帆大模型平台,它是大模型全流程工具链,包含了数据管理、模型训练、评估优化、预测服务部署以及插件服务,能够有效帮助产业用户高效率、低成本应用到文心系列大模型。

ad6a78ee478228e3d1a8f0c0eff985a4.png

目前,百度已经联合国家电网、浦发银行、泰康、吉利等企业,发布了 11个行业大模型,实现了中国最大的大模型产业落地规模。

横向扎稳大模型核心技术,纵向打通大模型与产业的边界,构成了大模型+云,能否成功的两大因素。而两手抓、两手强的百度智能云,也正是凭借于此,率先展开了大模型+云的新画卷。

总结起来,云计算市场急切需要新的发展引擎,而大模型的爆火与持续发展,正好可以让AI公有云成为这样的引擎。在这样的云计算变革中,AI基础技术与AI产业能力,将决定未来云计算市场的格局。

云计算的确定性未来,就发生在产业与大模型的交汇处。

10334e3660091029764527f07c2af046.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/9404.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Oracle 多条记录根据某个字段获取相邻两条数据间的间隔天数,小于31天的记录都筛选出来

需求描述:在Oracle中 住院记录记录表为v_hospitalRecords,表中FIHDATE入院时间,FBIHID是住院号, 我想查询出每个患者在他们的所有住院记录中是否在一个月内再次入院(相邻的两条记录进行比较),并且住院记录大于一的患者…

qsort的使用及模拟实现

qsort函数是C语言库中提供的一种快速排序,头文件是stdlib.h qsort的使用 qsort函数需要四个参数: 1.排序的起始位置的地址(数组名): arr 2.排序元素的个数: sizeof(arr)/sizeof(arr[0]) 3.排序元素…

echarts 饼图中间添加文字

需求:饼图中间展示总量数据 方法一、设置series对应饼图的label属性 series: [{type: "pie",radius: [55%, 62%],center: ["67%", "50%"],itemStyle: {borderRadius: 10,borderColor: #fff,borderWidth: 2},// 主要代码在这里label: …

protobuf入门实践1

protobuf入门实践1 下载和安装 protobuf:https://github.com/google/protobuf 解压压缩包:unzip protobuf-master.zip 2、进入解压后的文件夹:cd protobuf-master 3、安装所需工具:sudo apt-get install autoconf automake libt…

PostgreSQL数据库动态共享内存管理器——Dynamic shared memory areas

dsm.c提供的功能允许创建后端进程间共享的共享内存段。DSA利用多个DSM段提供共享内存heap;DSA可以利用已经存在的共享内存(DSM段)也可以创建额外的DSM段。和系统heap使用指针不同的是,DSA提供伪指针,可以转换为backend…

python与深度学习(六):CNN和手写数字识别二

目录 1. 说明2. 手写数字识别的CNN模型测试2.1 导入相关库2.2 加载数据和模型2.3 设置保存图片的路径2.4 加载图片2.5 图片预处理2.6 对图片进行预测2.7 显示图片 3. 完整代码和显示结果4. 多张图片进行测试的完整代码以及结果 1. 说明 本篇文章是对上篇文章训练的模型进行测试…

工具推荐:Linux Busybox

文章首发地址 BusyBox是一个开源的、轻量级的、可嵌入式的、多个Unix工具的集合。BusyBox提供了各种Unix工具的实现,包括文件处理工具、网络工具、shell工具、系统管理工具、进程管理工具等等。它被设计为一个小巧、高效、可靠、易于维护的工具,适用于嵌…

微服务——服务异步通讯RabbitMQ

前置文章 消息队列——RabbitMQ基本概念容器化部署和简单工作模式程序_北岭山脚鼠鼠的博客-CSDN博客 消息队列——rabbitmq的不同工作模式_北岭山脚鼠鼠的博客-CSDN博客 消息队列——spring和springboot整合rabbitmq_北岭山脚鼠鼠的博客-CSDN博客 目录 Work queues 工作队列…

设计模式 - 工厂模式

一、 简单工厂(Simple Factory Pattern) 1、概念 一个工厂对象决定创建出哪一种产品类的实力,但不属于GOF23种设计模式。 简单工厂适用于工厂类负责创建的对象较少的场景,且客户端只需要传入工厂类的参数,对于如何创…

Andrew算法求凸包模板

前置知识 向量的叉乘: 设 a ⃗ ( x a , y a , z a ) , b ⃗ ( x b , y b , z b ) \vec a(x_a,y_a,z_a), \vec b(x_b, y_b,z_b) a (xa​,ya​,za​),b (xb​,yb​,zb​), 令 a ⃗ \vec a a 和 b ⃗ \vec b b 的叉乘为 c ⃗ \vec c c , 有: c ⃗ ∣ i j k x a y a z a x b y…

【深度学习】GPT-3

2020年5月,OpenAI在长达72页的论文《https://arxiv.org/pdf/2005.14165Language Models are Few-Shot Learners》中发布了GPT-3,共有1750亿参数量,需要700G的硬盘存储,(GPT-2有15亿个参数),它比GPT-2有了极大的改进。根…

钉钉返回:访问ip不在白名单之中,请参考FAQ

新版钉钉 在开发管理-服务器出口IP-配置返回错误信息返回给你的requestIp

k8s部署新版elasticsearch+kibana并配置快照备份

版本:es 7.17.6 kibana 7.17.6 k8s:1.19.16 一、介绍 Elasticsearch和Kibana是一对强大的开源工具,通常一起使用以构建实时数据分析和可视化解决方案。 Elasticsearch: Elasticsearch是一个分布式、高性能的实时搜索和分析引擎。它构建在开源搜索引擎库Lucene之上…

【C++】开源:Redis数据库配置与使用

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍Redis数据库配置与使用。 无专精则不能成,无涉猎则不能通。。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下&#xff0c…

边缘计算对现代交通的重要作用

边缘计算之所以重要,是在于即使在5G真正商用之时,可以实现超大带宽(eMBB)的应用场景,但庞大数据量的涌现也就意味着需要在云和端传输过程中找到一个承接点,对数据进行预处理再选择是否上云。 边缘计算应用演…

【Python入门【推导式创建序列、字典推导式、集合推导式】(九)

👏作者简介:大家好,我是爱敲代码的小王,CSDN博客博主,Python小白 📕系列专栏:python入门到实战、Python爬虫开发、Python办公自动化、Python数据分析、Python前后端开发 📧如果文章知识点有错误…

SkyWalking链路追踪-技术文档首页

SkyWalking 文档中文版(社区提供) (skyapm.github.io)https://skyapm.github.io/document-cn-translation-of-skywalking/ SkyWalking-基本概念 SkyWalking链路追踪是一个用于分布式系统的性能监控工具,它帮助开发人员了解系统中各组件之间…

工程安全监测无线振弦采集仪在建筑物的应用分析

工程安全监测无线振弦采集仪在建筑物的应用分析 工程安全监测无线振弦采集仪是一种在建筑物中应用的重要设备。它通过无线采集建筑物内部的振动信息,对建筑物的安全性进行监测和评估,为建筑物的施工和使用提供了可靠的技术支持。本文将详细介绍工程安全…

ElasticSearch基础篇-安装与基本操作

ElasticSearch基础篇 安装 官网 下载地址 下载完成后对文件进行解压,项目结构如下 进入bin目录点击elasticsearch.bat启动服务 9300 端口为 Elasticsearch 集群间组件的通信端口, 9200 端口为浏览器访问的 http协议 RESTful 端口 打开浏览器&#…

力扣热门100题之矩阵置0【中等】

题目描述 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]] 示例 2&#xff…