短期风速预测|LSTM|ELM|批处理(matlab代码)

目录

1 主要内容

LSTM-长短时记忆

ELM-极限学习机

2 部分代码

3 程序结果

4 程序链接


主要内容

该程序是预测类的基础性代码,程序对河北某地区的气象数据进行详细统计,程序最终得到pm2.5的预测结果,通过更改数据很容易得到风速预测结果。程序主要分为三部分,分别是基于LSTM算法、基于ELM算法和基于LSTM和批处理组合算法,对于预测类程序,算法组合是创新的方向,很多预测都是通过智能算法对参数寻优+LSTM/ELM等算法进行组合,本次提供的三种基础性代码是对同一数据进行处理分析,并得到相应的预测结果,程序采用matlab编写,无需其他软件包,注释清楚,方便学习!

详实的气象数据是一大亮点。
  • LSTM-长短时记忆

  • ELM-极限学习机

极 限 学 习 机 是 在 原 来 单 隐 含 层 神 经 网 络 (Single-hidden Layer Feedforward Networks,SLFNs)上加以改进后,发展而成的新型智能算法。ELM 方法具有学习效率高的特点,被广泛应用于分类、回归、聚类和特征学习等问题中。作为 一种新型的学习算法,ELM 学习速度快、不容易陷入局部最优,对于单隐层神经网络,可以随机初始化输入权重和偏置并得到相应的输出权重,有效克制了局部 极限的问题。因为极限学习机不包括神经网络反向传播中参数优化的过程,而是 通过求解广义逆矩阵的途径一步求出隐含层的偏置量,这样既提高了算法的精度, 同时收敛速度更快,学习效果更好。

部分代码

%% 此程序为不含批训练的lstm
clear;clc;close all;format compact
%% 加载数据
qx1=xlsread('沧州气象日度数据.xlsx','B2:G362');%由于有缺失值,因此只读了前几列最后几列
qx2=xlsread('沧州气象日度数据.xlsx','J2:O362');
qx=[qx1 qx2];
wr=xlsread('沧州污染日度数据.xlsx','C2:C362');%污染数据比气象数据多几条,我把对应日期的数据删除了
input=[wr(1:end-1,:) qx(2:end,:)]';%输入为前一天的pm2.5+预测日的气象  输出为预测日的pm2.5
output=wr(2:end,:)';
​
​
input=mapminmax(input,0,1);
[output,outputns]=mapminmax(output,0,1);
%% 提取300个样本为训练样本,剩下样本为预测样本
n=1:size(input,2);
i=300;
train_data=input(:,n(1:i));
train_label=output(:,n(1:i));
P_test=input(:,n(i+1:end));
T_test=output(:,n(i+1:end));
​
data_length=size(train_data,1);
data_num=size(train_data,2);
%% 网络参数初始化
% 结点数设置
input_num=data_length;%输入层节点
cell_num=3;%隐含层节点
output_num=1;%输出层节点
dropout=0;%dropout系数
cost_gate=1e-10;% 误差要求精度
ab=4*sqrt(6/(cell_num+output_num));%  利用均匀分布进行初始化
% 网络中门的偏置
bias_input_gate=rand(1,cell_num);
bias_forget_gate=rand(1,cell_num);
bias_output_gate=rand(1,cell_num);
%% 网络权重初始化
weight_input_x=rand(input_num,cell_num)/ab;
weight_input_h=rand(output_num,cell_num)/ab;
weight_inputgate_x=rand(input_num,cell_num)/ab;
weight_inputgate_c=rand(cell_num,cell_num)/ab;
weight_forgetgate_x=rand(input_num,cell_num)/ab;
weight_forgetgate_c=rand(cell_num,cell_num)/ab;
weight_outputgate_x=rand(input_num,cell_num)/ab;
weight_outputgate_c=rand(cell_num,cell_num)/ab;
%hidden_output权重
weight_preh_h=rand(cell_num,output_num);
%网络状态初始化
h_state=rand(output_num,data_num);
cell_state=rand(cell_num,data_num);
%% 网络训练学习
for iter=1:100%训练次数iter
%     yita=0.1;yita=1/(10+sqrt(iter)); %自适应学习率for m=1:data_num%前馈部分if(m==1)gate=tanh(train_data(:,m)'*weight_input_x);input_gate_input=train_data(:,m)'*weight_inputgate_x+bias_input_gate;output_gate_input=train_data(:,m)'*weight_outputgate_x+bias_output_gate;for n=1:cell_numinput_gate(1,n)=1/(1+exp(-input_gate_input(1,n)));output_gate(1,n)=1/(1+exp(-output_gate_input(1,n)));endforget_gate=zeros(1,cell_num);forget_gate_input=zeros(1,cell_num);cell_state(:,m)=(input_gate.*gate)';elsegate=tanh(train_data(:,m)'*weight_input_x+h_state(:,m-1)'*weight_input_h);input_gate_input=train_data(:,m)'*weight_inputgate_x+cell_state(:,m-1)'*weight_inputgate_c+bias_input_gate;forget_gate_input=train_data(:,m)'*weight_forgetgate_x+cell_state(:,m-1)'*weight_forgetgate_c+bias_forget_gate;output_gate_input=train_data(:,m)'*weight_outputgate_x+cell_state(:,m-1)'*weight_outputgate_c+bias_output_gate;for n=1:cell_numinput_gate(1,n)=1/(1+exp(-input_gate_input(1,n)));forget_gate(1,n)=1/(1+exp(-forget_gate_input(1,n)));output_gate(1,n)=1/(1+exp(-output_gate_input(1,n)));endcell_state(:,m)=(input_gate.*gate+cell_state(:,m-1)'.*forget_gate)';endpre_h_state=tanh(cell_state(:,m)').*output_gate;h_state(:,m)=(pre_h_state*weight_preh_h)';%误差计算Error=h_state(:,m)-train_label(:,m);Error_Cost(1,iter)=sum(Error.^2);if(Error_Cost(1,iter)1;break;else %权重更新

程序结果

上面三个图是标准LSTM算法得到的预测结果,相对平均误差为0.4828。

上述两个图是LSTM+批处理得到的预测结果,相对平均误差为0.3690,可见增加批处理对于预测精度提成达23.6%。

上述两个图是ELM方法预测结果,相对平均误差为0.4052,较LSTM算法有所提升。

4 程序链接

 短期风速预测|LSTM|ELM|批处理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/93304.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java 中的参数传递方式

Java 中的参数传递方式通常被称为“值传递”,这意味着在方法调用时,实际上传递给方法的是变量的副本,而不是变量本身。尽管这被广泛称为“值传递”,但需要注意的是,这并不意味着 Java 不支持引用传递。事实上&#xff…

WSL2安装历程

WLS2安装 1、系统检查 安装WSL2必须运行 Windows 10 版本 2004 及更高版本(内部版本 19041 及更高版本)或 Windows 11。 查看 Windows 版本及内部版本号,选择 Win R,然后键入winver。 2、家庭版升级企业版 下载HEU_KMS_Activ…

Django模板加载与响应

前言 Django 的模板系统将 Python 代码与 HTML 代码解耦,动态地生成 HTML 页面。Django 项目可以配置一个或多个模板引擎,但是通常使用 Django 的模板系统时,应该首先考虑其内置的后端 DTL(Django Template Language,D…

【Flutter】Flutter Web 开发 如何从 URL 中获取参数值

【Flutter】Flutter Web 开发 如何从 URL 中获取参数值 文章目录 一、前言二、Flutter Web 中的 URL 处理三、如何从 URL 中获取参数四、实际业务中的用法五、完整示例六、总结 一、前言 大家好!我是小雨青年,今天我想和大家分享一下在 Flutter Web 开发…

UGUI交互组件Button

一.初识Button对象 从菜单中创建Button对象,Button的文本由子节点Text对象显示,Button对象的组件除了基础组件外,还有Image用来显示Button常规态的图片,还有Button组件用来控制点击过渡效果和点击事件的响应。 二.Button组件的属…

C#,数值计算——Ranq1的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Recommended generator for everyday use.The period is 1.8E19. Calling /// conventions same as Ran, above. /// </summary> public class Ranq1 { …

在亚马逊云科技控制台上创建 Amazon Cognito 用户池

介绍: Amazon Cognito 是一个强大的客户身份和访问管理服务&#xff0c;为您的面向客户的应用程序提供安全的认证和授权。本教程将指导您使用亚马逊云科技控制台创建 Amazon Cognito 用户池的过程。您将学习如何配置登录属性、安全要求、注册体验、消息传送和应用集成设置等各…

批量差异分析 批量findmarkers

各个单细胞亚群独立在两个分组做差异分析-腾讯云开发者社区-腾讯云 (tencent.com) Idents(sce) paste0(c,sce$group ) table(Idents(sce)) degs lapply(unique(sce$celltype), function(x){FindMarkers(sce[,sce$celltypex],ident.1 c1,ident.2 c2) }) xdegs[[1]] do.call…

Android 11.0 mt6771新增分区功能实现二

1.前言 在11.0的系统开发中,在对某些特殊模块中关于数据的存储方面等需要新增分区来保存, 所以就需要在系统分区新增分区,接下来就来实现这个功能,看系列二的实现过程 2.mt6771新增分区功能实现二的核心类 build/make/core/envsetup.mk build/make/core/main.mk build/m…

【2023年11月第四版教材】第17章《干系人管理》(第二部分)

第17章《干系人管理》&#xff08;第二部分&#xff09; 4 过程1-识别干系人4.1 数据收集★★★4.3数据分析4.4 权力利益方格4.5 数据表现&#xff1a;干系人映射分析和表现★★★ 5 过程2-规划干系人参与5.1 数据分析5.2 数据表现★★★5.2.1 干系人参与度评估矩阵★★★ 5.3 …

python学习笔记

>>> print(type(3.1415926)) <class float> >>> print(type(Learn Python in imoc)) <class str> >>> print(type(100)) <class int> >>> print(type(0b1101)) <class int> >>>在Python里面&#xff0c;…

从0开始python学习-29.selenium 通过cookie信息进行登录

1. 手动输入cookie信息保持登录状态 url https://test.com/login driver.get(url) # 手动将cookie信息写入&#xff08;有多个的情况需要分开写入&#xff09;--弊端为需要每次都手动输入&#xff0c;很麻烦不适用 driver.add_cookie({"name": "SIAM_IMAGE_…

git_SSL certificate problem: unable to get local issuer certificate解决办法

拉取问题 再拉取代码的时候&#xff0c;报这个错误 这是由于当你通过HTTPS访问Git远程仓库的时候&#xff0c;如果服务器上的SSL证书未经过第三方机构认证&#xff0c;git就会报错。原因是因为未知的没有签署过的证书意味着可能存在很大的风险。解决办法就是通过下面的命令将…

【算法分析与设计】回溯法(上)

目录 一、学习要点1.1 回溯法1.2 问题的解空间1.3 0-1背包问题的解空间1.4 旅行售货员问题的解空间1.5 生成问题状态的基本方法 二、回溯法的基本思想三、回溯算法的适用条件四、递归回溯五、迭代回溯六、子集树与排列树七、装载问题八、批处理作业调度问题 一、学习要点 理解回…

第44节——redux store

一、概念 Redux 是一个用于管理 JavaScript 应用状态的库。在 Redux 中&#xff0c;整个应用的状态都存储在一个对象中&#xff0c;称为 store。 Store 实际上是一个 JavaScript 对象&#xff0c;它存储了整个应用的状态。它是唯一的&#xff0c;意味着应用中只有一个 store。…

操作系统初探 - 进程的概念

目录 预备知识 冯诺依曼和现代计算机结构 操作系统的理解 进程和PCB的概念 PCB中的信息 查看进程信息的指令 - ps pid 进程状态 预备知识 在学习操作系统之前我们需要先了解一下如下的预备知识。 冯诺依曼和现代计算机结构 美籍匈牙利科学家冯诺依曼最先提出“程序存…

POJ 3109 Inner Vertices 离散化+树状数组

一、题目大意 围棋棋盘&#xff0c;如果某个坐标上下左右的四个方向都存在棋子&#xff0c;那么ans1&#xff0c;根据输入的棋子数量&#xff0c;求出ans的数量。 二、解题思路 题目中有说到如果程序不会结束&#xff0c;那么输出-1&#xff0c;这其实是无源之水&#xff0c…

altera FPGA 程序固化命令

altera FPGA 程序固化命令 一、命令解析 1&#xff09;sof文件转为flash文件的命令&#xff1a; qsys_sdram.sof为sof文件名称&#xff0c;hwimage.flash为生成的flash名称&#xff0c;针对不同的工程只需要更改这两个地方就可以 sof2flash --inputqsys_sdram.sof --outputh…

力扣第239题 c++滑动窗口经典题 单调队列

题目 239. 滑动窗口最大值 困难 提示 队列 数组 滑动窗口 单调队列 堆(优先队列) 给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的…

【爬虫】用wget命令爬虫的简易教程

文章目录 1. 获取登录的请求2. 用postman模拟登录请求3. 用wget模拟登录请求并保存cookie4. 开始爬取网站5. 查看爬取结果6. 网站爬虫简易教程 爬取需要登录的网站的资源 背景&#xff1a;对于一些网站需要使用用户名和密码登录并且使用了https&#xff0c;我们如果不通过凭证将…