java - 七大比较排序 - 详解


前言

本篇介绍了七大比较排序,直接插入排序,希尔排序,冒泡排序,堆排序,选择排序,快速排序,归并排序,一些简单思想+代码实现,如有错误,请在评论区指正,让我们一起交流,共同进步!


文章目录

  • 前言
  • 1. 直接插入排序
  • 2. 希尔排序
  • 3. 冒泡排序
  • 4. 堆排序 - 基于完全二叉树
  • 5. 选择排序
  • 6 快速排序:
    • 6.2 非递归快排
  • 7. 归并排序
  • 总结

本文开始

1. 直接插入排序

思路 : 一组数据, 当插入下标为i时的数据, 比较前面i-1个数据, 如果前面i-1个数据中,有数据大于插入为i位置下标的数据, i-1位置数据, 向后移动, 直至i-1个数据中没有小于i下标的值, 再将i下标的值插入j+1位置;
时间复杂度: O(N^2)
空间复杂度: O(1)
稳定性: 稳定
直接插入代码实现:

 public static void insertSort(int[] array) {//默认第一个有序不用排序, 从第二个开始排序for (int i = 1; i < array.length; i++) {int tmp = array[i];//作为判断标准,作为插入元素int j = i-1; //循环完,还需要使用到j下标, 所以拿出来定义for (; j >= 0; j--) {//判断tmp 是否 大于下标为j的元素if(array[j] > tmp) {//小于就前移一位array[ j+1] = array[ j ];}else {//插入值大于插入值前面的元素. 直接跳出//array[ j+1 ] = tmp;break;}}//比较完后,需要将插入值放到j+1位置array[j+1] = tmp;}}

在这里插入图片描述

2. 希尔排序

思想: 希尔排序, 直接插入排序的优化版本; 每组分组, 组数任意,这再进行排序(插入排序); 这里可以将数据除2依次分组;
数据分组不一定是相邻的,假设10个元素分5组,每组两个元素,在5位置的元素组数减5就是0位置,就是跟5一组的另一个元素;

以上可得到, 一个位置加减组数,可以得到一组的另外元素位置
平均时间复杂度: O(n^1.3)
空间复杂度: O(1)

希尔排序代码实现:

public static void shellSort(int[] array) {int gap = array.length;//初始化组数, 每个元素为一组,在除2分组while (gap > 1) {//shell排序shell(array,gap);//分组gap /= 2;}//第一次gap越界没有排, 此时以整体为一组,进行排序shell(array,gap);}public static void shell(int[] array,int gap) {//gap => 分几组的组数// 从第gap个开始排序for (int i = gap; i < array.length; i++) {int tmp = array[i];//作为判断标准,作为插入元素int j = i-gap; //循环完,还需要使用到j下标, 所以拿出来定义for (; j >= 0; j--) {//判断tmp 是否 大于下标为j的元素if(array[j] > tmp) {//小于就前移gap位array[j+gap] = array[j];}else {//插入值大于插入值前面的元素. 直接跳出break;}}//比较完后,需要将插入值放到j+1位置array[j+gap] = tmp;}}

3. 冒泡排序

思路: 升序为例,遍历数组, 比较两个相邻的值, 如果左位置大于右位置,就交换两个的位置, 一直比较数组结束;
时间复杂度: O(n^2)
空间复杂度: O(1)
稳定性: 稳定

冒泡排序优化实现 :
定义一个标志,某趟排序标志没有改变, 证明数组已经有序,不需要继续排序了,直接跳出即可;
发现每趟冒泡排序都会确定一个位置, 让每趟排序少1次比较;

public static void bubbleSort(int[] array) {//arrat.length个元素, 跑arrat.length-1趟//定义一个标志,某趟排序,标志没有改变, 证明数组已经有序,不需要继续排序了,直接跳出即可boolean flag = false; for (int i = 0; i < array.length - 1; i++) {for (int j = 0; j < array.length - 1 - i; j++) {if(array[j] > array[j+1]) {//交换swap(array,j,j+1);flag = true;}}if(flag == false) {break;}}}

4. 堆排序 - 基于完全二叉树

思路: 创建一个堆, 以大根堆为例, 要获取升序数组,只知道堆顶是最大,不知道左右孩子谁大, 需要堆排;
将堆顶与尾元素交换, 再向下调整为大根堆, 使尾元素下标-1, 循环执行此过程直至尾元素减为0;

时间复杂度: O(n*logn)
空间复杂度: O(logn)
稳定性: 不稳定

堆排序代码实现:

 public static void heapSort(int[] array) {//堆排先有堆,建立一个大根堆creatHeap(array);//大根堆的左右不能确定谁大谁小,所以需要堆排int end = array.length-1;while (end > 0) {//首尾元素交换swap(array,0,end);//此时保持大根堆,需要重新向下调整shiftDown(array,0,end);//排好最后一个位置, 最后一个位置有序,数组减1排下一个,第二大的就可以放到倒数第二,依次类推直到end结束//最后层序遍历,可以获取升序数组end--;}}//建堆(基于完全二叉树): 从最后一颗子树开始,使用向下调整(父节点位置向下移动到子节点位置)private static void creatHeap(int[] array) {//父节点下标 = ( 孩子节点下标 - 1 ) / 2for (int parent = (array.length - 1 - 1) / 2; parent >= 0; parent--) {shiftDown(array,parent,array.length);}}//向下调整需要获取子节点位置, 所以给了父节点, 根据二叉树规则得到子节点下标,// 得到子节点下标,需要保证它不越界,// 通过观察每个子节点最大都不会超过数组长度, 所以给一个通用的数组长度即可private static void shiftDown(int[] array, int parent, int end) {//确定孩子节点int child = 2 * parent + 1;//必须有左孩子,保证孩子节点不越界while (child < end) {//左右孩子谁大,右孩子大则更新右孩子节点下标,否则不更新if(child + 1 < end && array[child] < array[child + 1]) {child++;//下标+1表示到了右孩子下标}//比较父子节点大小if(array[child] > array[parent]) {swap(array,child,parent);//更新父子节点位置,向下进行调整的,父子节点都是向下的parent = child;child = 2 * parent + 1;}else {break;//孩子小于父亲这棵树就不用换}}}

5. 选择排序

**思路①: 遍历数组, 第一个 i 位置有序,从i+1位置开始到数组结束(待排序位置), 寻找最小值下标, 提前定义变量记录最小值下标位置, 最小值不是一次就可以找到的, 可能需要不断更新需要记录; 找到之后交换最小值位置与 i 位置元素, 之后一次i++,重复上述操作即可;
思路②:
定义两个下标left, right表示每次遍历的范围,使用 i 遍历数组(数组范围[left+1,right]);
循环找最大最小值下标maxIndex,minIndex,当left < right 时,找到两个下标, 分别进行交换(交换最小值与left位置,最大值与right交换);
特殊情况:交换最小值与左下标, 交换后会遇到特殊情况最大值刚好位于left位置, 交换最小值后,最大值正好跑到最小值位置, 此时需要更新最大值位置; **
特殊情况如图: left位置与maxIndex位置一致时产生的问题

在这里插入图片描述

时间复杂度: O(n^2)
空间复杂度: O(1)
稳定性: 不稳定

选择排序代码1实现:

public static void selectSort(int[] array) {//遍历数组for (int i = 0; i < array.length; i++) {int minIndex = i;//在剩余待排序序列中找到最小的, 如果找不到直接下一个for (int j = i + 1; j < array.length; j++) {if(array[j] <  array[minIndex]) {//更改最小值下标minIndex = j;}}//找到最小值与起始位置交换, 每次i位置就为起始位置, 在剩余length-i位置中找比i位置小的元素,找到交换//直到数组找完 i > lengthint tmp = array[i];array[i] = array[minIndex];array[minIndex] = tmp;}}

选择排序代码2实现:

    public static void selectSort2(int[] array) {int left = 0;int right = array.length - 1;while (left < right) {//定义两个存储下标int minIndex = left;int maxIndex = left;//从待排序序列中找, 第一个认为有序, 找到最大最小值位置for (int i = left + 1; i < array.length; i++) {if(array[i] < array[minIndex]) {minIndex = i;}if(array[i] > array[maxIndex]) {maxIndex = i;}}//交换, 最小值换到左边, 最大值换到右边swap(array,left,minIndex);//存在特殊情况最大值刚好位于left位置, 交换最小值后,最大值正好跑到最小值位置// 此时需要更新最大值位置if(maxIndex == left) {maxIndex = minIndex;}//在交换最大值位置swap(array,right,maxIndex);left++;right--;}}private static void swap(int[] array, int i, int j) {int tmp = array[i];array[i] = array[j];array[j] = tmp;}

6 快速排序:

思路: 快排递归是一样的,只是使用的找基准值下标的方法不同;
①挖坑法找基准值下标思路: 每次以第一个为基准定义为tmp(left位置), 先从数组右边开始找到大于tmp的数就将它放入left位置, 再从左边找到小于tmp的数,将他放到right位置, 直到left == right相遇时, tmp再放到left位置, 此时它的位置就是基准值位置;
② hoare法: 先记录最左边下标位置t, 循环结束后还需要交换t位置与新的left位置;
以第一个为基准值, 先从右边找到比基准值小的下标, 从左边找到比基准值大的下标, 再交换二者元素,依次交换直至left > right 循环结束;

好的情况:
时间复杂度: O(n*logn)
空间复杂度: O(logn)
坏蛋情况:
时间复杂度: O(n^2)
空间复杂度: O(n)
稳定性: 不稳定

快排代码: 基准值左边全部小于基准值, 基准值右边全部大于基准值,
patition方法能返回基准值下标, 再返还基准值下标前,代码已经完成排序操作了;

public void quickSort(int[] array) {quick(array,0,array.length-1);}private void quick(int[] array, int start, int end) {//判断越界if(start >= end) {return;}//基准值: 它的左边小于基准值,右边大于基准值;//获取下一次基准值下标,依次为界,将数组分为两个子序列//左右两边重复次过程int index = patition(array,start,end);//左右两边快排quick(array,start,index - 1);quick(array,index + 1,end);}//挖坑法 -private int patition(int[] array, int left, int right) {//获取第一个为基准值,一个数组的最左边int tmp = array[left];//遍历数组while (left < right) {//先遍历右边找到比基准值小的//从最右边往左边找, 如果都是小于第一个的值, 会越界需要判断while (left < right && array[right] > tmp) {right--;}//找到小的就放到左边array[left] = array[right];while (left < right && array[left] < tmp) {left++;}//左边找到大的就放到右边array[right] = array[left];}array[left] = tmp;//左右相遇时,此下标就是下一次分割数组的位置return left;}

**快排方法2:

    private int patition2(int[] array, int left, int right) {//获取第一个为基准值,一个数组的最左边int tmp = array[left];int t = left;//遍历数组while (left < right) {//先遍历右边找到比基准值小的//从最右边往左边找, 如果都是小于第一个的值, 会越界需要判断 => 逆序情况while (left < right && array[right] > tmp) {right--;}//从最左边往右边找, 如果都是大于第一个的值, 会越界需要判断 => 升序情况while (left < right && array[left] < tmp) {left++;}//交换左右下标值swap(array,left,right);}swap(array,t,left);//左右相遇时,此下标就是下一次分割数组的位置return left;}

hoare法模拟图示在这里插入图片描述
交换全过程在这里插入图片描述

快排代码优化:
优化1: 三数取中法, 在数组最左边,中间,最右边,比较获取中间的值下标, 与数组第一个元素交换;
patition每次会返回基准值下标, 为了让基准值在数组中间,均分数组
基准值分割数组,不一定是均等分割,这样排序速度就会减慢
优化2:减少递归次数, 排序到最后会趋向大部分有序, 对于大部分有序直接插入排序是最快的

		//优化2:if(end - start + 1 < 10) {insertSort(array,start,end);return;}//优化1: 尽量让基准值为于每次数组中间,均分数组能加快排序速度int midTree = minTree(array,start,end);//在最左边,中间,最右边,获取中间的值下标, 与数组第一个元素交换swap(array,midTree,start);

插入排序:

private void insertSort(int[] array, int start, int end) {for (int i = start + 1; i <= end; i++) {//从第二个开始,记录此时值int tmp = array[i];int j = i-1;for (; j >= start ; j--) {//数组中值大于 tmp j位置值前移1if(array[j] > tmp) {array[j+1] = array[j];}else {//前面的已经排行序了, 如果小于tmp直接跳出就行,不要看前面的了break;}}array[j] = tmp;}}

6.2 非递归快排

非递归思想:
第一次数组前后下标已知(0,array.length-1),从第二次开始使用栈;
求的基准值下标,根据基准值分割数组获取子数组;
判断获得的子数组元素是否大于1,大于1才让数组或子数组左右下标,放入栈中; 栈不为空,弹出栈中元素,进行快排patition方法(跟递归方法中的patition一样,这里就不写了)直到栈中元素为空

 public void quickSort2(int[] array) {//Deque实现的顺序栈Deque<Integer> stack = new ArrayDeque<>();//获取数组的前后下标int left = 0;int right = array.length - 1;//找基准值int pivot = patition(array,left,right);//保证基准值左边至少有一位数if(pivot > left + 1) {stack.push(left);stack.push(pivot - 1);}//保证基准值右边至少有1个元素if(pivot < right - 1) {stack.push(pivot + 1);stack.push(right);}while (!stack.isEmpty()) {//先弹出右下标,再弹出左下标right = stack.pop();left = stack.pop();pivot = patition(array,left,right);//求新的基准值下标//保证基准值左边至少有一位数if(pivot > left + 1) {stack.push(left);stack.push(pivot - 1);}//保证基准值右边至少有1个元素if(pivot < right - 1) {stack.push(pivot + 1);stack.push(right);}}//跳出循环, 再也没有子数组时,快排完毕;}

7. 归并排序

7.1 归并排序递归实现:
归并思想:
分治法: 先分,使用递归,将数组分为最小单位1, 再合并看自己要求,这里按升序为例, 合并两个数组,需定义一个新数组,数组1与数组2比较大小, 谁小谁先放入新数组, 可能两数组长度不一样, 长的数组的剩余元素直接放入新数组即可, 最后再将新数组组放到旧数组即可;

归并时间复杂度: O(n*logn)
空间复杂度: O(n)
稳定性: 稳定
归并排序实现代码:

public void mergeSort(int[] array) {mergeSortChild(array,0,array.length-1);}public void mergeSortChild(int[] array,int left,int right) {//防止越界,需要判断//当left == right: 说明递归结束if(left >= right) {return;}//找到中间下标,从而拆分数组int mid = (left + right) / 2;//拆分左边mergeSortChild(array,left,mid);//拆分右边mergeSortChild(array,mid + 1,right);//合并merge(array,left,right,mid);}//升序为例public void merge(int[] array, int left, int right, int mid) {//比较数组,需要遍历下标int s1 = left;int s2 = mid + 1;//数组2的开始下标//创建一个新数组,存放排好序的数组int[] tmp = new int[right - left + 1];int k = 0;//记录新数组元素个数//数组1与数组2都有元素进行比较while (s1 <= mid && s2 <= right) {//因为是升序,谁小谁先进新数组tmpif(array[s1] < array[s2]) {tmp[k++] = array[s1++];}else {tmp[k++] = tmp[s2++];}}//如果比较的s1,s2数组不等长(两数组中元素个数不一致)//再次遍历剩余数组,将剩余元素放入新数组中while (s1 <= mid) {tmp[k++] = array[s1++];}while (s2 <= right) {tmp[k++] = array[s2++];}//新数组在放到旧数组中for (int i = 0; i < tmp.length; i++) {array[i + left] = array[i];}}

归并排序非递归实现:
思想: 分组排序,一组一个一个,在一组两个两个,再四个四个, 分完一组再归并;

代码实现:

 public void mergeSort2(int[] array) {//定义组数int gap = 1;while (gap < array.length) {for (int i = 0; i < array.length; i += gap*2) {//i += gap*2 => 排完一组排一组,使最左下标更换以至于遍历全部数组元素int left = i;int mid = left + gap - 1;//中间下标越界if(mid > array.length) {mid = array.length - 1;}//右下标越界int right = mid + gap;if(right > array.length) {right = array.length - 1;}//排序merge(array,left,right,mid);}//增加每组的个数1->2,2->4等等gap *= 2;}}

总结

✨✨✨各位读友,本篇分享到内容如果对你有帮助给个👍赞鼓励一下吧!!
感谢每一位一起走到这的伙伴,我们可以一起交流进步!!!一起加油吧!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/93168.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring的注解开发-非自定义Bean的配置

非自定义Bean注解开发 非自定义Bean不能象自定义Bean一样使用Component注解及其衍生注解进行管理&#xff0c;非自定义Bean要通过工厂的方式进行实例化&#xff0c;使用Bean标注即可&#xff0c;Bean的属性为beanName&#xff0c;使用Bean注解作用在方法中&#xff0c;通过定义…

linux系统与应用

Windows中的硬盘和盘符的关系&#xff1b; 硬盘通常为一块到两块&#xff1b;数量与盘符没有直接关系&#xff1b;一块硬盘可以分为多个盘符&#xff0c;如c,d,e,f,g等&#xff1b;当然理论上也可以一块硬盘只有一个盘符&#xff1b;学习linux时&#xff0c;最好使用固态硬盘&a…

如何套用模板制作大屏?

在山海鲸可视化的资源中心里内置了大量的二维、三维大屏模板&#xff0c;大家可以根据需要找到自己想要的模板&#xff0c;然后点击下载直接进行使用。 有需要可自行前往哔哩哔哩账号中观看相关内容的视频教程↓↓↓ 山海鲸可视化的个人空间-山海鲸可视化个人主页-哔哩哔哩视频…

设计模式之抽象工厂模式--创建一系列相关对象的艺术(简单工厂、工厂方法、到抽象工厂的进化过程,类图NS图)

目录 概述概念适用场景结构类图 衍化过程业务需求基本的数据访问程序工厂方法实现数据访问程序抽象工厂实现数据访问程序简单工厂改进抽象工厂使用反射抽象工厂反射配置文件衍化过程总结 常见问题总结 概述 概念 抽象工厂模式是一种创建型设计模式&#xff0c;它提供了一种将相…

react create-react-app v5 从零搭建(使用 npm run eject)

前言&#xff1a; 好久没用 create-react-app做项目了&#xff0c;这次为了个h5项目&#xff0c;就几个页面&#xff0c;决定自己搭建一个&#xff08;ps:mmp 好久没用&#xff0c;搭建的时候遇到一堆问题&#xff09;。 我之前都是使用 umi 。后台管理系统的项目 使用 antd-…

PY32F003F18之RTC

一、RTC振荡器 PY32F003F18实时时钟的振荡器是内部RC振荡器&#xff0c;频率为32.768KHz。它也可以使用HSE时钟&#xff0c;不建议使用。HAL库提到LSE振荡器&#xff0c;但PY32F003F18实际上没有这个振荡器。 缺点&#xff1a;CPU掉电后&#xff0c;需要重新配置RTC&#xff…

保姆级 -- Zookeeper超详解

1. Zookeeper 是什么(了解) Zookeeper 是一个 分布式协调服务 的开源框架, 主要用来解决分布式集群中应用系统的一致性问题, 例如怎样避免同时操作同一数据造成脏读的问题. ZooKeeper 本质上是 一个分布式的小文件存储系统 . 提供基于类似于文件系统的目录树方式的数据存储, …

第二十届北京消防展即将开启,汉威科技即将精彩亮相

10月10日~13日&#xff0c;第二十届中国国际消防设备技术交流展览会&#xff0c;将在北京市顺义区中国国际展览中心新馆隆重举行。该展会由中国消防协会举办&#xff0c;是世界三大消防品牌展会之一&#xff0c;本届主题为“助力产业发展&#xff0c;服务消防救援”。届时将有4…

【Java 进阶篇】JDBC(Java Database Connectivity)详解

JDBC&#xff08;Java Database Connectivity&#xff09;是 Java 中用于连接和操作数据库的标准 API。它允许 Java 应用程序与不同类型的数据库进行交互&#xff0c;执行查询、插入、更新和删除等操作。本文将详细介绍 JDBC 的各个类及其用法&#xff0c;以帮助您更好地理解和…

【C语言经典100例题-66】(用指针解决)输入3个数a,b,c,按大小顺序输出。

代码&#xff1a; #include<stdio.h> #define _CRT_SECURE_NO_WARNINGS 1//VS编译器使用scanf函数时会报错&#xff0c;所以添加宏定义 swap(p1, p2) int* p1, * p2; {int p;p *p1;*p1 *p2;*p2 p; } int main() {int n1, n2, n3;int* pointer1, * pointer2, * point…

力扣 -- 416. 分割等和子集(01背包问题)

解题步骤&#xff1a; 参考代码&#xff1a; 未优化代码&#xff1a; class Solution { public:bool canPartition(vector<int>& nums) {int nnums.size();int sum0;for(const auto& e:nums){sume;}if(sum%21){return false;}int aimsum/2;//多开一行&#xff…

Linux系统编程基础:进程控制

文章目录 一.子进程的创建操作系统内核视角下的父子进程存在形式验证子进程对父进程数据的写时拷贝 二.进程等待进程非阻塞等待示例: 三.进程替换内核视角下的进程替换过程:综合利用进程控制系统接口实现简单的shell进程 进程控制主要分为三个方面,分别是:子进程的创建,进程等待…

前端两年半,CSDN创作一周年

文章目录 一、机缘巧合1.1、起因1.2、万事开头难1.3、 何以坚持&#xff1f; 二、收获三、日常四、憧憬 五、总结 一、机缘巧合 1.1、起因 最开始接触CSDN&#xff0c;还是因为同专业的同学&#xff0c;将计算机实验课的实验题&#xff0c;记录总结并发在了专业群里。后来正式…

几个推荐程序员养成的好习惯

本文框架 前言case1 不想当然case2 不为了解决问题而解决问题case3 不留问题死角case4 重视测试环节 前言 中秋国庆双节至&#xff0c;旅行or回乡探亲基本是大家的选择&#xff0c;看看风景或陪陪家人确实是个难得的机会。不过我的这次假期选择了闭关&#xff0c;不探亲&#…

【Python基础】常用模块学习:sys|os|pytest

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

Python|OpenCV-如何给目标图像添加边框(7)

前言 本文是该专栏的第7篇,后面将持续分享OpenCV计算机视觉的干货知识,记得关注。 在使用opencv处理图像的时候,会不可避免的对图像的一些具体区域进行一些操作。比如说,想要给目标图像创建一个围绕图像的边框。简单的来说,就是在图片的周围再填充一个粗线框。具体效果,…

快速开发微信小程序之一登录认证

一、背景 记得11、12年的时候大家一窝蜂的开始做客户端Android、IOS开发&#xff0c;我是14年才开始做Andoird开发&#xff0c;干了两年多&#xff0c;然后18年左右微信小程序火了&#xff0c;我也做了两个小程序&#xff0c;一个是将原有牛奶公众号的功能迁移到小程序&#x…

centos7卸载docker

菜鸟教程-常见命令&#xff1a;https://www.runoob.com/docker/docker-command-manual.html 1. 准备工作&#xff1a; 1.1 杀死docker有关的容器&#xff1a; docker kill $(docker ps -a -q)1.2 删除所有docker容器&#xff1a; docker rm $(docker ps -a -q)1.3 删除所有d…

简单走近ChatGPT

目录 一、ChatGPT整体背景认知 &#xff08;一&#xff09;ChatGPT引起关注的原因 &#xff08;二&#xff09;与其他公司的竞争情况 二、NLP学习范式的发展 &#xff08;一&#xff09;规则和机器学习时期 &#xff08;二&#xff09;基于神经网络的监督学习时期 &…

房产政策松绑,VR看房助力市场回春

近日房贷利率、房产限购开始松绑&#xff0c;房地产市场逐渐被激活&#xff0c;房产行业的线上服务能力&#xff0c;也愈发的受到了重视。随着房贷利率、首付比例变化的消息逐渐推出&#xff0c;部分用户开始入手房产市场&#xff0c;因此房产行业的线上服务也需要不断升级&…