保姆级 -- Zookeeper超详解

1. Zookeeper 是什么(了解)
Zookeeper 是一个 分布式协调服务 的开源框架, 主要用来解决分布式集群中应用系统的一致性问题, 例如怎样避免同时操作同一数据造成脏读的问题.
ZooKeeper 本质上是 一个分布式的小文件存储系统 . 提供基于类似于文件系统的目录树方式的数据存储, 并且可以对树中的节点进行有效管理. 从而用来维护和监控你存储的数据的状态变化. 通过监控这些数据状态的变化,从而可以达到基于数据的集群管理. 在大数据生态系统里,很多组件的命名都是某种动物,比如 hadoop 就是大象, hive就是蜜蜂, 而 Zookeeper 就是动物管理员.
2. Zookeeper 的数据模型(必会)
ZK 本质上是一个分布式的小文件存储系统.
ZK 表现为一个分层的文件系统目录树结构, 既能存储数据, 而且还能像目录一样有子节点. 每个节点可以存最多 1M 左右的数据.
每个节点称做一个 Znode, 每个 Znode 都可以通过其路径唯一标识.
而且客户端还能给节点添加 watch, 也就是监听器, 可以监听节点的变化, 这个功能常在实际开发中作为监听服务器集群机器上下线操作.
2.1 节点结构
图中的每个节点称为一个 Znode。 每个 Znode 由 3 部分组成:
① stat:此为状态信息, 描述该 Znode 的版本, 权限等信息
② data:与该 Znode 关联的数据
③ children:该 Znode 下的子节点
2.2 节点类型
59 60
Znode 有 2 大类 4 小类, 两大类分别为永久节点和临时节点.
永久节点(Persistent): 客户端和服务器端断开连接后,创建的节点不会消失, 只有在客户端执行删除操作的时候, 他们才能被删除.
临时节点(Ephemeral): 客户端和服务器端断开连接后,创建的节点会被删除. Znode 还有一个序列化的特性, 这个序列号对于此节点的父节点来说是唯一的, 这样便会记录每个子节点创建的先后顺序. 它的格式为“%10d”(10 位数字, 没有数值的数位用 0 补充, 例如“0000000001”),因此节点可以分为 4 小类:
 永久节点(Persistent)
 永久_序列化节点(Persistent_Sequential)
 临时节点(Ephemeral)
 临时_序列化节点(Ephemeral_Sequential)
3. Zookeeper 的 watch 监听机制(高薪常问)
在 ZooKeeper 中还支持一种 watch(监听)机制, 它允许对 ZooKeeper 注册监听, 当监听的对象发生指定的事件的时候, ZooKeeper 就会返回一个通知.
Watcher 分为以下三个过程:客户端向 ZK 服务端注册 Watcher、服务端事件发生触发 Watcher、客户端回调 Watcher 得到触发事件情况. 触发事件种类很多,如:节点创建,节点删除,节点改变,子节点改变等。
Watcher 是一次性的. 一旦被触发将会失效. 如果需要反复进行监听就需要反复进行注册.
3.1 监听器原理
首先要有一个 main()线程
在 main 线程中创建 Zookeeper 客户端, 这时就会创建两个线程, 一个复制网络连接通信(connect), 一个负责监听(listener).
通过 connect 线程将注册的监听事件发送给 zk, 常见的监听有 监听节点数据的变化 get path [watch]
监听节点状态的变化 stat path [watch]
监听子节点增减的变化 ls path [watch]
将注册的监听事件添加到 zk 的注册的监听器列表中
监听到有数据或路径变化, 就会将这个消息发送给 listener 线程.
listener 线程内部调用了 process()方法.此方法是程序员自定义的方法, 里面可以写明监听到事件后做如何的通知操作.
3.2 监听器实际应用
监听器+ZK 临时节点能够很好的监听服务器的上线和下线.
第一步: 先想 zk 集群注册一个监听器, 监听某一个节点路径
第二步: 主要服务器启动, 就去 zk 上指定路径下创建一个临时节点.
第三步: 监听器监听 servers 下面的子节点有没有变化, 一旦有变化, 不管新增(机器上线)还是减少(机器下线)都会马上给对应的人发送通知.
4. Zookeeper 的应用场景(高薪常问)
ZK 提供的服务包括: 统一命名服务, 统一配置管理, 统一集群管理, 集群选主, 服务动态上下线, 分布式锁等.
4.1 统一命名服务
统一命名服务使用的是 ZK 的 node 节点全局唯一的这个特点. 在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如:IP 不容易记 住,而域名容易记住。创建一个节点后, 节点的路径就是全局唯一的, 可以作为全局名称使用.
4.2 统一配置管理
统一配置管理, 使用的是 Zookeeper 的 watch 机制
需求: 分布式环境下, 要求所有节点的配置信息是一致的, 比如 Kafka 集群. 对配置文件修改后, 希望能够快速同步到各个节点上.
方案: 可以把所有的配置都放在一个配置中心, 然后各个服务分别去监听配置中心, 一旦发现里面的内容发生变化, 立即获取变化的内容, 然后更新本地配置即可.
实现: 配置管理可交由 Zookeeper 实现
可将配置信息写入 Zookeeper 上的一个 Znode.
各个客户端服务器监听这个 Znode.
一旦 Znode 中的数据被修改, Zookeeper 将通知各个客户端服务器.
4.3 统一集群管理
统一集群管理使用的是 Zookeeper 的 watch 机制
需求: 分布式环境中, 实时掌握每个节点的状态是必要的, 可以根据节点实时状态做出一些调整.
方案: Zookeeper 可以实现实时监控节点状态变化
可将节点信息写入 Zookeeper 上的一个 Znode.
监听这个 Znode 可获取它的实时状态变化.
4.4 集群选主
集群选主使用的是 zookeeper 的临时节点.
需求: 在集群中, 很多情况下是要区分主从节点的, 一般情况下主节点负责数据写入, 从节点负责数据读取, 那么问题来了, 怎么确定哪一个节点是主节点的, 当一个主节点宕机的时候, 其他从节点怎么再来选出一个主节点呢?
实现:使用 Zookeeper 的临时节点可以轻松实现这一需求, 我们把上面描述的这个过程称为集群选主的过程, 首先所有的节点都认为是从节点, 都有机会称为主节点, 然后开始选主, 步骤比较简单
 所有参与选主的主机都去 Zookeeper 上创建同一个临时节点,那么最终一定只有一个客户端请求能够 创建成功。
 成功创建节点的客户端所在的机器就成为了 Master,其他没有 成功创建该节点的客户端,成为从节点
 所 有 的 从 节 点 都 会 在 主 节 点 上 注 册 一 个 子 节 点 变 更 的 Watcher,用于监控当前主节点是否存活,一旦 发现当前的主节点挂了,那 么其他客户端将会重新进行选主。
4.5 分布式锁
分布式锁使用的是 Zookeeper 的临时有序节点
需求: 在分布式系统中, 很容出现多台主机操作同一资源的情况, 比如两台主机同时往一个文件中追加写入文本, 如果不去做任何的控制, 很有可能出现一个写入操作被另一个写入操作覆盖掉的状况.
方案: 此时我们可以来一把锁, 哪个主机获取到了这把锁, 就执行写入, 另一台主机等待; 直到写入操作执行完毕,另一台主机再去获得锁,然后写入.这把锁就称为分布式锁, 也就是说:分布式锁是控制分布式系统之间同步访问共享 资源的一种方式
实现: 使用 Zookeeper 的临时有序节点可以轻松实现这一需求.
1. 所有需要执行操作的主机都去 Zookeeper 上创建一个 临时有序节点 .
2. 然后获取到 Zookeeper 上创建出来的这些节点进行一个 从小到大 的排序.
3. 判断自己创建的节点是不是最小的, 如果是, 自己就获取到了锁; 如果不是,则对最小的节点注册一个监听.
4. 如果自己获取到了锁, 就去执行相应的操作. 当执行完毕之后, 连接断开, 节点消失, 锁就被释放了.
5. 如果自己没有获取到锁, 就等待, 一直监听节点是否消失,锁被释放后, 再重新执行抢夺锁的操作.
5. Zookeeper 集群[高级](高薪常问)
5.1 ZK 集群介绍
Zookeeper 在一个系统中一般会充当一个很重要的角色, 所以一定要保证它的高可用, 这就需要部署 Zookeeper 的集群. Zookeeper 有三种运行模式: 单机模式, 集群模式和伪集群模式.
单机模式: 使用一台主机不是一个 Zookeeper 来对外提供服务, 有单点故障问题, 仅适合于开发、测试环境.
集群模式: 使用多台服务器, 每台上部署一个 Zookeeper 一起对外提供服务, 适 合于生产环境.
伪集群模式: 在服务器不够多的情况下, 也可以考虑在一台服务器上部署多个Zookeeper 来对外提供服务.
5.2 数据一致性处理
ZK 是一个分布式协调开源框架, 用于分布式系统中保证数据一致性问题, 那么 ZK 是如
何保证数据一致性的呢?
5.2.1 集群角色
Leader : 负责投票的发起和决议, 更新系统状态, 是 事务请求(写请求) 的唯一处理者, 一个 ZooKeeper 同一时刻只会有一个 Leader. 对于 create 创建/setData 修改/delete 删除等有写操作的请求, 则需要统一转发给 leader 处理, leader 需要决定编号和执行操作, 这个过程称为一个事务. Follower: 接收客户端请求, 参与选主投票. 处理客户端非事务(读操作)请求,转发事务请求(写请求)给 Leader; Observer: 针对访问量比较大的 zookeeper 集群, 为了增加并发的读请求. 还可新
增观察者角色.
作用: 可以接受客户端请求, 把请求转发给leader, 不参与投票, 只同步 leader的状态 .
5.2.2 Zookeeper 的特性
1)Zookeeper: 一个领导者(Leader), 多个跟随者(Follower)组成的集群.
2)集群中只要有半数以上节点存活, Zookeeper 集群就能正常服务.
3) 全局数据一致 : 每个 Server 保存一份相同的数据副本, Client 无论连接到哪个 Server, 数
据都是一致的.
4)更新请求 顺序性 : 从同一个客户端发起的事务请求,最终会严格按照顺序被应用到zookeeper 中.
5) 数据更新原子性 : 一次数据更新要么成功, 要么失败。
6) 实时性 ,在一定时间范围内,Client 能读到最新数据。
5.2.3 ZAB 协议
Zookeeper 采用 ZAB(Zookeeper Atomic Broadcast)协议来保证 分布式数据一 致性 。
ZAB 并不是一种通用的分布式一致性算法,而是一种专为 Zookeeper 设计的崩溃可恢复的原子消息广播算法。
ZAB 协议包括两种基本模式: 崩溃恢复 模式和 消息广播 模式:
消息广播模式主要用来进行事务请求的处理
崩溃恢复模式主要用来在集群启动过程,或者 Leader 服务器崩溃退出后进行新的Leader 服务器的选举以及数据同步.
5.2.4 ZK 集群写数据流程
Client 向 Zookeeper 的 Server1 上写数据, 发送一个写请求.
如果 Server1 不是 Leader, 那么 Server1 会把接受的请求进一步 转发 给 Leader, 因为 每个 Zookeeper 的 Server 里面有一个是 Leader. 这个 Leader 会将写请求广播 给各个Server, 比如 Server1 和 Server2, 各个 Server 会将该写请求加入待写队列, 并向 Leader 发送成功信息(ack 反馈机制 ).
当 Leader 收到 半数以上 Server 的成功信息, 说明该写操作可以执行. Leader 会向各个Server 发送事务提交 信息, 各个 Server 收到信息后会落实队列里面的写请求, 此时写成功.
Server1 会进一步通知 Client 数据写成功了, 这是就认为整个写操纵成功.
5.3 ZK 集群选举机制
Zookeeper 服务器有四个状态:
looking: 寻找 leader 状态, 当服务器处于该状态时, 它会认为当前集群中没有 leader, 因此需要进入 leader 选举状态.
leading: 领导者状态, 表明当前服务器角色是 leader.
following: 跟随者状态, 表明当前服务器角色是 follower.
observing:观察者状态, 表明当前服务器角色是 observer。
半数机制: 集群中半数以上机器存活, 集群可用, 所以 Zookeeper 适合安装奇数 台服务器 . 集群启动时, 如果当前机器票数超过了总票数一半则为 Leader, Leader 产生后, 投过票的机器就不能再投票了.
Zookeeper虽然在配置文件中没有指定主从节点. 但是, Zookeeper工作时, 是有一个节点 Leader, 其他则为 Follower, Leader 是通过内部的选举机制临时产生的. 配置文件中会指定每台 ZK 的 myid, 而且不能重复, 通常用 1,2,3…区分每台 ZK 的myid.
5.3.1 集群启动器的选举机制
在集群初始化阶段, 当有一台服务器 server1 启动时, 其单独无法进行和完成 leader 选举, 当第二台服务器 server2 启动时, 此时两台机器可以相互通信, 每台机器都试图找到 leader, 于是进入 leader 选举过程.
1. 服务器 1 启动, 服务器 1 状态保持为 looking.
2. 服务器 2 启动, 发起一次选举. 服务器 1 投票给比自己 ID 号大的服务器 2. 服务器 2 投票给自己.
投票结果 : 服务器 1 票数 0 票, 服务器 2 票数 2 票, 没有半数以上结果, 选举无法完成, 服务器 1, 2 状态保持 looking.
3. 服务器 3 启动, 发起一次选举. 此时服务器 1 和 2 都会更改选票为服务器 3, 服务器 3 投票给自己.
投票结果 : 服务器 1 为 0 票, 服务器 2 为 0 票, 服务器 3 为 3 票. 此时服务器 3 的票数已经超过半数,服务器 3 当选 Leader. 服务器 1,2 更改状态为 follower,服务器 3更改状态为 leader;
4. 服务器 4 启动, 发起一次选举. 此时服务器 1,2,3 已经不是 looking 状态, 不会更改选票信息, 服务器 4 投票给自己.
投票结果 :服务器 3 为 3 票,服务器 4 为 1 票。此时服务器 4 服从多数,更改选票信息为服务器 3,并更改状态为 following;
5. 服务器 5 启动,同 4 一样当小弟.
5.3.2 服务器运行时期的 Leader 选举
在 zk 运行期间, leader 与非 leader 服务器各司其职, 即便当有非 leader 服务器宕机或
者新加入, 此时也不会影响leader. 但是一旦leader服务器宕机了, 那么整个集群将会暂停
对外服务, 进入新一轮 leader 选 举, 其过程和启动时期的 Leader 选举过程基本一致.
假设正在运行的有 server1,server2,server3 三台服务器,当前 leader 是 server2,若某
一时刻 leader 挂了, 此时便开始 leader 选举. 选举过程如下:
变更转态, server1 和 server3 变更为 looking 状态.
开始投票, 每台服务器投票给比自己 myid 大的机器, 没有比自己大的就投给自己.
这样server3有2票, server1有1票, server3的票数超过了集群一半, 当选leader,
server1 变更状态 follower.
6. 为什么 zookeeper 集群的数目,一般为奇数个?(高薪常问)
1.容错
由于在增删改操作中需要半数以上服务器通过,来分析以下情况。
2 台服务器,至少 2 台正常运行才行(2 的半数为 1,半数以上最少为 2),正常运行1台服务器都不允许挂掉
3 台服务器,至少 2 台正常运行才行(3 的半数为 1.5,半数以上最少为 2),正常运行可以允许 1 台服务器挂掉
4 台服务器,至少 3 台正常运行才行(4 的半数为 2,半数以上最少为 3),正常运行可以允许 1 台服务器挂掉
5 台服务器,至少 3 台正常运行才行(5 的半数为 2.5,半数以上最少为 3),正常运行可以允许 2 台服务器挂掉
6 台服务器,至少 3 台正常运行才行(6 的半数为 3,半数以上最少为 4),正常运行可以允许 2 台服务器挂掉
通过以上可以发现,3 台服务器和 4 台服务器都最多允许 1 台服务器挂掉,5 台服务器
和 6 台服务器都最多允许 2 台服务器挂掉 但是明显 4 台服务器成本高于 3 台服务器成本,6 台服务器成本高于 5 服务器成本。 这是由于半数以上投票通过决定的。
2.防脑裂
一个 zookeeper 集群中,可以有多个 follower.observer 服务器,但是必需只能有一 个leader 服务器。 如果 leader 服务器挂掉了,剩下的服务器集群会通过半数以上投票选出一个新的leader 服务器。
集群互不通讯情况:
一个集群 3 台服务器,全部运行正常,但是其中 1 台裂开了,和另外 2 台无法通讯。3
台机器里面 2 台正常运行过半票可以选出一个 leader。
一个集群 4 台服务器,全部运行正常,但是其中 2 台裂开了,和另外 2 台无法通讯。4
台机器里面 2 台正常工作没有过半票以上达到 3,无法选出 leader 正常运行。
一个集群 5 台服务器,全部运行正常,但是其中 2 台裂开了,和另外 3 台无法通讯。5
台机器里面 3 台正常运行过半票可以选出一个 leader。
一个集群 6 台服务器,全部运行正常,但是其中 3 台裂开了,和另外 3 台无法通讯。6
台机器里面 3 台正常工作没有过半票以上达到 4,无法选出 leader 正常运行。
通过以上分析可以看出,为什么 zookeeper 集群数量总是单出现,主要原因还是在于第 2 点,防脑裂,对于第 1 点,无非是正本控制,但是不影响集群正常运行。但是出现第 2 种裂的情况,zookeeper 集群就无法正常运行了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/93157.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第二十届北京消防展即将开启,汉威科技即将精彩亮相

10月10日~13日,第二十届中国国际消防设备技术交流展览会,将在北京市顺义区中国国际展览中心新馆隆重举行。该展会由中国消防协会举办,是世界三大消防品牌展会之一,本届主题为“助力产业发展,服务消防救援”。届时将有4…

【Java 进阶篇】JDBC(Java Database Connectivity)详解

JDBC(Java Database Connectivity)是 Java 中用于连接和操作数据库的标准 API。它允许 Java 应用程序与不同类型的数据库进行交互,执行查询、插入、更新和删除等操作。本文将详细介绍 JDBC 的各个类及其用法,以帮助您更好地理解和…

【C语言经典100例题-66】(用指针解决)输入3个数a,b,c,按大小顺序输出。

代码&#xff1a; #include<stdio.h> #define _CRT_SECURE_NO_WARNINGS 1//VS编译器使用scanf函数时会报错&#xff0c;所以添加宏定义 swap(p1, p2) int* p1, * p2; {int p;p *p1;*p1 *p2;*p2 p; } int main() {int n1, n2, n3;int* pointer1, * pointer2, * point…

力扣 -- 416. 分割等和子集(01背包问题)

解题步骤&#xff1a; 参考代码&#xff1a; 未优化代码&#xff1a; class Solution { public:bool canPartition(vector<int>& nums) {int nnums.size();int sum0;for(const auto& e:nums){sume;}if(sum%21){return false;}int aimsum/2;//多开一行&#xff…

Linux系统编程基础:进程控制

文章目录 一.子进程的创建操作系统内核视角下的父子进程存在形式验证子进程对父进程数据的写时拷贝 二.进程等待进程非阻塞等待示例: 三.进程替换内核视角下的进程替换过程:综合利用进程控制系统接口实现简单的shell进程 进程控制主要分为三个方面,分别是:子进程的创建,进程等待…

前端两年半,CSDN创作一周年

文章目录 一、机缘巧合1.1、起因1.2、万事开头难1.3、 何以坚持&#xff1f; 二、收获三、日常四、憧憬 五、总结 一、机缘巧合 1.1、起因 最开始接触CSDN&#xff0c;还是因为同专业的同学&#xff0c;将计算机实验课的实验题&#xff0c;记录总结并发在了专业群里。后来正式…

几个推荐程序员养成的好习惯

本文框架 前言case1 不想当然case2 不为了解决问题而解决问题case3 不留问题死角case4 重视测试环节 前言 中秋国庆双节至&#xff0c;旅行or回乡探亲基本是大家的选择&#xff0c;看看风景或陪陪家人确实是个难得的机会。不过我的这次假期选择了闭关&#xff0c;不探亲&#…

【Python基础】常用模块学习:sys|os|pytest

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

Python|OpenCV-如何给目标图像添加边框(7)

前言 本文是该专栏的第7篇,后面将持续分享OpenCV计算机视觉的干货知识,记得关注。 在使用opencv处理图像的时候,会不可避免的对图像的一些具体区域进行一些操作。比如说,想要给目标图像创建一个围绕图像的边框。简单的来说,就是在图片的周围再填充一个粗线框。具体效果,…

快速开发微信小程序之一登录认证

一、背景 记得11、12年的时候大家一窝蜂的开始做客户端Android、IOS开发&#xff0c;我是14年才开始做Andoird开发&#xff0c;干了两年多&#xff0c;然后18年左右微信小程序火了&#xff0c;我也做了两个小程序&#xff0c;一个是将原有牛奶公众号的功能迁移到小程序&#x…

centos7卸载docker

菜鸟教程-常见命令&#xff1a;https://www.runoob.com/docker/docker-command-manual.html 1. 准备工作&#xff1a; 1.1 杀死docker有关的容器&#xff1a; docker kill $(docker ps -a -q)1.2 删除所有docker容器&#xff1a; docker rm $(docker ps -a -q)1.3 删除所有d…

简单走近ChatGPT

目录 一、ChatGPT整体背景认知 &#xff08;一&#xff09;ChatGPT引起关注的原因 &#xff08;二&#xff09;与其他公司的竞争情况 二、NLP学习范式的发展 &#xff08;一&#xff09;规则和机器学习时期 &#xff08;二&#xff09;基于神经网络的监督学习时期 &…

房产政策松绑,VR看房助力市场回春

近日房贷利率、房产限购开始松绑&#xff0c;房地产市场逐渐被激活&#xff0c;房产行业的线上服务能力&#xff0c;也愈发的受到了重视。随着房贷利率、首付比例变化的消息逐渐推出&#xff0c;部分用户开始入手房产市场&#xff0c;因此房产行业的线上服务也需要不断升级&…

leetCode 122.买卖股票的最佳时机 II 贪心算法

122. 买卖股票的最佳时机 II - 力扣&#xff08;LeetCode&#xff09; 给你一个整数数组 prices &#xff0c;其中 prices[i] 表示某支股票第 i 天的价格。 在每一天&#xff0c;你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买&…

gitlab配置webhook限制提交注释

一、打开gitlab相关配置项 vim /etc/gitlab/gitlab.rb gitlab_shell[custom_hooks_dir] "/etc/gitlab/custom_hooks" 二、创建相关文件夹 mkdir -p /etc/gitlab/custom_hooks mkdir -p /etc/gitlab/custom_hooks/post-receive.d mkdir -p /etc/gitlab/custom_h…

Python教程:PyQt5需要学习,哪些知识点??

PyQt5是基于图形程序框架Qt5的Python语言实现&#xff0c;由一组Python模块构成。它可用于Python 2和3&#xff0c;拥有超过620个类和6000个函数和方法。这是一个跨平台的工具包&#xff0c;可以运行在所有主要的操作系统&#xff0c;包括UNIX、Windows、Mac OS、Linux等。 #我…

vue3学习实战

vue3新增变化 diff算法变化 vue3的diff算法没有vue2的头尾、尾头之间的diff&#xff0c;对diff算法进行了优化&#xff0c;最长递归子序列。 ref VS reactive ref 支持所有的类型&#xff0c;reactive 支持引用类型&#xff0c;array object Map Setref取值、赋值&#xff…

步力宝科技爆款产品定位,开创智能物联网新商业

数据显示&#xff0c;中国处于 “亚健康”状态人口数量约占总人口的70%&#xff0c;亚健康是一种临界状态&#xff0c;指介于健康和疾病之间的状态。亚健康是一个动态演变的过程&#xff0c;既有向慢病发展的趋势&#xff0c;也能通过合理的干预使人体重返健康状态&#xff0c;…

奥斯卡·王尔德

奥斯卡王尔德 奥斯卡王尔德&#xff08;Oscar Wilde&#xff0c;1854年10月16日—1900年11月30日&#xff09;&#xff0c;出生于爱尔兰都柏林&#xff0c;19世纪英国&#xff08;准确来讲是爱尔兰&#xff0c;但是当时由英国统治&#xff09;最伟大的作家与艺术家之一&#xf…

【RuoYi项目分析】在RuoYi网关实现验证码功能

文章目录 1. 验证码功能的类清单2. 验证码的实现2.1. 验证码的获取2.2. 验证码的校验 3. 总结4. 资料参考 本文主要介绍了用户如何实现验证码&#xff0c;以及该功能如何与 Spring Gateway 联系起来。 1. 验证码功能的类清单 类功能CaptchaProperties验证码的 yml 配置Captcha…