OpenCV查找和绘制轮廓:findContours和drawContours

1  任务描述:
绘制图中粗线矩形的2个边界,并找到其边界的中心线

图1 原始图像

图1 原始图像

 2.函数原型

findContours( InputOutputArray image, OutputArrayOfArrays contours,
                              OutputArray hierarchy, int mode,
                              int method, Point offset=Point());

  • image:图像必须是8位单通道图像,可以是灰度图像,但更常用的是二值图像,一般是经过Canny,拉普拉斯等边缘检测算子处理过的二值图像;(函数运行时,这个图像会被直接涂改,因此如果是将来还有用的图像,应该复制之后再传给该函数)
  • contours:定义为vector<vector<Point>> contours;向量,向量内每个元素保存了一组由连续的Point点构成的点的集合的向量,每一组Point点集就是一个轮廓,有多少轮廓,向量contours就有多少元素
  • mode:轮廓提取方式
    ○ cv::RETR_EXTERNAL:只检测最外围轮廓;
    ○ cv::RETR_LIST:检测所有的轮廓,但是不建立等级关系;
    ○ cv::RETR_CCOMP:检测所有的轮廓,但所有轮廓只建立两种等级关系,外围为顶层
    ○ cv::RETR_TREE:检测所有的轮廓,所有轮廓建立一个等级树结构
  • method:轮廓的近似方法
    ○ CV_CHAIN_APPROX_NONE:保存物体边界上所有连续的轮廓点到contours向量中
    ○ CV_CHAIN_APPROX_SIMPLE:仅保存轮廓的拐点信息,把所有轮廓拐点处的点保存到contours向量中
import numpy as np
import cv2img = cv2.imread('test2.jpg')# 图像预处理
#将图像转换成二值图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
binary = cv2.Canny(gray, 30, 120)
#查找所有矩形的轮廓
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow('origin', img)
cv2.imshow('Canny', binary)draw_img = img.copy()
# 计算矩形框的四个顶点坐标
rect = cv2.minAreaRect(contours[1])
box = cv2.boxPoints(rect)
box = np.int0(box)
print(box)
cv2.drawContours(draw_img, [box], 0, (0, 0, 255), 2)rect1 = cv2.minAreaRect(contours[3])
box1 = cv2.boxPoints(rect1)
box1 = np.int0(box1)
print(box1)
# 绘制轮廓
cv2.drawContours(draw_img, [box1], 0, (0, 255, 0),2)box2 =(box+box1)/2
box2 = np.int0(box2)
print(box2)
cv2.drawContours(draw_img, [box2], 0, (255,0, 0),2)
cv2.imshow('origin with contours', draw_img)if cv2.waitKey(0) & 0xFF == ord('q'):cv2.destroyWindow('binary')cv2.destroyWindow('origin')cv2.destroyWindow('origin with contours')

运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/92727.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

移动端 [Android iOS] 压缩 ECDSA PublicKey

移动端 [Android & iOS] 压缩 ECDSA PublicKey AndroidiOS 使用 Android KeyStore 和 iOS 的 Secure Enclave 提供的安全能力使用 P-256 来对 API 请求进行签名&#xff0c;服务器端再进行验证。 但是发现不论是 iOS 还是安卓都没有提供一个便捷的方式从 iOS 的SecKeyCopyE…

0/1背包问题

例题HDU-2602 Problem Description Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave … The bone collector had a big bag wi…

2021-06-11 51蛋骗鸡用小数点作秒指示,分钟计时.(怎么用二个数码管做分的倒计时,DP亮灭来计秒)

缘由怎么用二个数码管做分的倒计时&#xff0c;DP亮灭来计秒,求思路 - 24小时必答区 #include "REG52.h" sbit K1 P1^5; sbit K2 P1^6; sbit K3 P1^7; sbit BUZ1P1^0; bit k0; unsigned char code SmZiFu[]{63,6,91,79,102,109,125,7,127,111,128};//0-9. unsign…

RPC协议

问题一&#xff1a;如何规定远程调用的语法&#xff1f;客户端如何告诉服务端&#xff0c;我是一个加法&#xff0c;而另一个是乘法。我是用字符串“add”传给你&#xff0c;还是传给你一个整数&#xff0c;比如 1 表示加法&#xff0c;2 表示乘法&#xff1f;服务端该如何告诉…

mysql json字段使用以及常用json函数,配合springBoot和mybatis-plus简化开发

Mysql JSON 类型分享 Mysql json字段了解&#xff1a; MySQL 中的 JSON 类型是一种用于存储和处理 JSON&#xff08;JavaScript Object Notation&#xff09;数据的数据类型。JSON 是一种轻量级的数据交换格式&#xff0c;常用于表示结构化的数据。MySQL 的 JSON 类型提供了以…

Fragment之间进行通信的最佳实现方式

前言 在Android应用程序中&#xff0c;片段&#xff08;Fragments&#xff09;是一种组件&#xff0c;用于构建灵活且可重用的用户界面。然而&#xff0c;当在应用程序中使用多个片段时&#xff0c;它们之间的通信变得非常重要。本文将介绍在Android应用程序中实现片段之间和片…

Polygon Miden:扩展以太坊功能集的ZK-optimized rollup

1. 引言 Polygon Miden定位为zkVM&#xff0c;定于2023年Q4上公开测试网。 zk、zkVM、zkEVM及其未来中指出&#xff0c;当前主要有3种类型的zkVM&#xff0c;括号内为其相应的指令集&#xff1a; mainstream&#xff08;WASM, RISC-V&#xff09;EVM&#xff08;EVM bytecod…

Java:正则表达式的命名捕获组

命名捕获组格式 (?<year>.*)-(?<month>.*)-(?<date>.*)完整示例 package com.example.demo;import java.util.regex.Matcher; import java.util.regex.Pattern;public class RegexTests {public static void main(String[] args) {String text "2…

3.css的各种选择器

元素选择器 body中的形式 <span class"cls" id"time">2023年03月02日 21:50</span> <span class"cls">央视网</span>head中的形式 <style>h1 {color: #4D4F53;}/* 元素选择器 */span {color: red;} }</styl…

Kubernetes 学习总结(38)—— Kubernetes 与云原生的联系

一、什么是云原生&#xff1f; 伴随着云计算的浪潮&#xff0c;云原生概念也应运而生&#xff0c;而且火得一塌糊涂&#xff0c;大家经常说云原生&#xff0c;却很少有人告诉你到底什么是云原生&#xff0c;云原生可以理解为“云”“原生”&#xff0c;Cloud 可以理解为应用程…

C++:stl:list的常用接口及其模拟实现

本文主要介绍c&#xff1a;stl中list常用接口的功能及使用方法&#xff0c;比较list与vector的区别&#xff0c;并对list的常用接口进行模拟实现。 目录 一、list的介绍和使用 1.list介绍 2.list使用 1.list的构造 2.list iterator的使用 3.list 容量相关 4.list元素访…

[NOIP2011 提高组] 选择客栈

[NOIP2011 提高组] 选择客栈 题目描述 丽江河边有 n n n 家很有特色的客栈&#xff0c;客栈按照其位置顺序从 1 1 1 到 n n n 编号。每家客栈都按照某一种色调进行装饰&#xff08;总共 k k k 种&#xff0c;用整数 0 ∼ k − 1 0 \sim k-1 0∼k−1 表示&#xff09;&am…

机器学习——seaborn实用画图方法简介

0、seaborn简介: 前言:下面的总结只是介绍seaborn有哪些方法和属性,至于具体使用,通过下面给出的名称稍作查找即可。重点应该关注本文介绍的seaborn的使用方法seaborn与机器学习的关系: 知识图谱 0.1、了解即可的知识: seaborn:在matplotlib的基础上画一些更好看的图,在…

Mysql集群高可用架构MHA

Mysql集群高可用架构MHA 一、MHA概述1.1、 MHA 是什么1.2、 MHA 的组成1.3、 MHA 的特点 二、MHA高可用实例2.1、配置主从复制2.1、 安装 MHA 软件2.2、故障模拟2.3、故障修复 一、MHA概述 1.1、 MHA 是什么 MHA&#xff08;MasterHigh Availability&#xff09;是一套优秀的M…

计算机毕设 大数据全国疫情数据分析与3D可视化 - python 大数据

文章目录 0 前言1 课题背景2 实现效果3 设计原理4 部分代码5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到毕业答辩的要求&#xff0c;这两年不断有学弟学妹告诉学长自己做的…

【C++刷题笔记】螺旋矩阵的两种写法

螺旋矩阵有两种判断大循环结束的方式&#xff0c;第一种是判断需要循环多少次&#xff0c;奇数的话需要额外处理&#xff1b;第二种通过取多少个数判断&#xff0c;不需要额外处理 方法一&#xff1a; class Solution { public:vector<int> spiralOrder(vector<vect…

OpenCV之直线曲线拟合

直线拟合fitLine void fitLine( InputArray points, OutputArray line, int distType,double param, double reps, double aeps ); points:二维点的数组或vector line:输出直线,Vec4f (2d)或Vec6f (3d)的vector distType:距离类型 param:距离参数 reps:径向的精度参数 a…

【2023集创赛】加速科技杯三等奖作品:私密性高精度刷手身份认证系统

本文为2023年第七届全国大学生集成电路创新创业大赛&#xff08;“集创赛”&#xff09;加速科技杯三等奖作品分享&#xff0c;参加极术社区的【有奖征集】分享你的2023集创赛作品&#xff0c;秀出作品风采&#xff0c;分享2023集创赛作品扩大影响力&#xff0c;更有丰富电子礼…

Centos7 安装mysql 5.7

Centos7 安装mysql 5.7 准备工作 centos7 服务器 xshell 安装教程 安装并配置 在安装MySQL之前&#xff0c;我们应该确保系统已经更新到最新的软件包和安全补丁。打开终端&#xff0c;输入以下命令来更新系统 yum update为了方便安装MySQL&#xff0c;我们需要下载并安装…

【数据结构】排序之插入排序和选择排序

&#x1f525;博客主页&#xff1a;小王又困了 &#x1f4da;系列专栏&#xff1a;数据结构 &#x1f31f;人之为学&#xff0c;不日近则日退 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、排序的概念及其分类 &#x1f4d2;1.1排序的概念 &#x1f4d2;1.2排序…