OpenCV查找和绘制轮廓:findContours和drawContours

1  任务描述:
绘制图中粗线矩形的2个边界,并找到其边界的中心线

图1 原始图像

图1 原始图像

 2.函数原型

findContours( InputOutputArray image, OutputArrayOfArrays contours,
                              OutputArray hierarchy, int mode,
                              int method, Point offset=Point());

  • image:图像必须是8位单通道图像,可以是灰度图像,但更常用的是二值图像,一般是经过Canny,拉普拉斯等边缘检测算子处理过的二值图像;(函数运行时,这个图像会被直接涂改,因此如果是将来还有用的图像,应该复制之后再传给该函数)
  • contours:定义为vector<vector<Point>> contours;向量,向量内每个元素保存了一组由连续的Point点构成的点的集合的向量,每一组Point点集就是一个轮廓,有多少轮廓,向量contours就有多少元素
  • mode:轮廓提取方式
    ○ cv::RETR_EXTERNAL:只检测最外围轮廓;
    ○ cv::RETR_LIST:检测所有的轮廓,但是不建立等级关系;
    ○ cv::RETR_CCOMP:检测所有的轮廓,但所有轮廓只建立两种等级关系,外围为顶层
    ○ cv::RETR_TREE:检测所有的轮廓,所有轮廓建立一个等级树结构
  • method:轮廓的近似方法
    ○ CV_CHAIN_APPROX_NONE:保存物体边界上所有连续的轮廓点到contours向量中
    ○ CV_CHAIN_APPROX_SIMPLE:仅保存轮廓的拐点信息,把所有轮廓拐点处的点保存到contours向量中
import numpy as np
import cv2img = cv2.imread('test2.jpg')# 图像预处理
#将图像转换成二值图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
binary = cv2.Canny(gray, 30, 120)
#查找所有矩形的轮廓
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow('origin', img)
cv2.imshow('Canny', binary)draw_img = img.copy()
# 计算矩形框的四个顶点坐标
rect = cv2.minAreaRect(contours[1])
box = cv2.boxPoints(rect)
box = np.int0(box)
print(box)
cv2.drawContours(draw_img, [box], 0, (0, 0, 255), 2)rect1 = cv2.minAreaRect(contours[3])
box1 = cv2.boxPoints(rect1)
box1 = np.int0(box1)
print(box1)
# 绘制轮廓
cv2.drawContours(draw_img, [box1], 0, (0, 255, 0),2)box2 =(box+box1)/2
box2 = np.int0(box2)
print(box2)
cv2.drawContours(draw_img, [box2], 0, (255,0, 0),2)
cv2.imshow('origin with contours', draw_img)if cv2.waitKey(0) & 0xFF == ord('q'):cv2.destroyWindow('binary')cv2.destroyWindow('origin')cv2.destroyWindow('origin with contours')

运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/92727.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2021-06-11 51蛋骗鸡用小数点作秒指示,分钟计时.(怎么用二个数码管做分的倒计时,DP亮灭来计秒)

缘由怎么用二个数码管做分的倒计时&#xff0c;DP亮灭来计秒,求思路 - 24小时必答区 #include "REG52.h" sbit K1 P1^5; sbit K2 P1^6; sbit K3 P1^7; sbit BUZ1P1^0; bit k0; unsigned char code SmZiFu[]{63,6,91,79,102,109,125,7,127,111,128};//0-9. unsign…

Polygon Miden:扩展以太坊功能集的ZK-optimized rollup

1. 引言 Polygon Miden定位为zkVM&#xff0c;定于2023年Q4上公开测试网。 zk、zkVM、zkEVM及其未来中指出&#xff0c;当前主要有3种类型的zkVM&#xff0c;括号内为其相应的指令集&#xff1a; mainstream&#xff08;WASM, RISC-V&#xff09;EVM&#xff08;EVM bytecod…

Kubernetes 学习总结(38)—— Kubernetes 与云原生的联系

一、什么是云原生&#xff1f; 伴随着云计算的浪潮&#xff0c;云原生概念也应运而生&#xff0c;而且火得一塌糊涂&#xff0c;大家经常说云原生&#xff0c;却很少有人告诉你到底什么是云原生&#xff0c;云原生可以理解为“云”“原生”&#xff0c;Cloud 可以理解为应用程…

[NOIP2011 提高组] 选择客栈

[NOIP2011 提高组] 选择客栈 题目描述 丽江河边有 n n n 家很有特色的客栈&#xff0c;客栈按照其位置顺序从 1 1 1 到 n n n 编号。每家客栈都按照某一种色调进行装饰&#xff08;总共 k k k 种&#xff0c;用整数 0 ∼ k − 1 0 \sim k-1 0∼k−1 表示&#xff09;&am…

机器学习——seaborn实用画图方法简介

0、seaborn简介: 前言:下面的总结只是介绍seaborn有哪些方法和属性,至于具体使用,通过下面给出的名称稍作查找即可。重点应该关注本文介绍的seaborn的使用方法seaborn与机器学习的关系: 知识图谱 0.1、了解即可的知识: seaborn:在matplotlib的基础上画一些更好看的图,在…

Mysql集群高可用架构MHA

Mysql集群高可用架构MHA 一、MHA概述1.1、 MHA 是什么1.2、 MHA 的组成1.3、 MHA 的特点 二、MHA高可用实例2.1、配置主从复制2.1、 安装 MHA 软件2.2、故障模拟2.3、故障修复 一、MHA概述 1.1、 MHA 是什么 MHA&#xff08;MasterHigh Availability&#xff09;是一套优秀的M…

计算机毕设 大数据全国疫情数据分析与3D可视化 - python 大数据

文章目录 0 前言1 课题背景2 实现效果3 设计原理4 部分代码5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到毕业答辩的要求&#xff0c;这两年不断有学弟学妹告诉学长自己做的…

OpenCV之直线曲线拟合

直线拟合fitLine void fitLine( InputArray points, OutputArray line, int distType,double param, double reps, double aeps ); points:二维点的数组或vector line:输出直线,Vec4f (2d)或Vec6f (3d)的vector distType:距离类型 param:距离参数 reps:径向的精度参数 a…

【2023集创赛】加速科技杯三等奖作品:私密性高精度刷手身份认证系统

本文为2023年第七届全国大学生集成电路创新创业大赛&#xff08;“集创赛”&#xff09;加速科技杯三等奖作品分享&#xff0c;参加极术社区的【有奖征集】分享你的2023集创赛作品&#xff0c;秀出作品风采&#xff0c;分享2023集创赛作品扩大影响力&#xff0c;更有丰富电子礼…

【数据结构】排序之插入排序和选择排序

&#x1f525;博客主页&#xff1a;小王又困了 &#x1f4da;系列专栏&#xff1a;数据结构 &#x1f31f;人之为学&#xff0c;不日近则日退 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、排序的概念及其分类 &#x1f4d2;1.1排序的概念 &#x1f4d2;1.2排序…

HTML详细基础(二)文件路径

目录 一.相对路径 二.绝对路径 三.超链接标签 四.锚点链接 首先&#xff0c;扩展一些HTML执行的原理&#xff1a; htmL(hypertext markup Language) 是一种规范&#xff08;或者说是一种标准&#xff09;&#xff0c;它通过标记符&#xff08;tag&#xff09;来标记要显示…

【FreeRTOS】FreeRTOS移植stm32详细步骤介绍

我在查找FreeRTOS移植的相关教程特别少&#xff0c;所以想非常详细的介绍FreeRTOS移植stm32详细步骤&#xff0c;包括源码的下载&#xff0c;源码介绍&#xff0c;系统移植&#xff0c;代码验证等&#xff0c;每一步都有对应的介绍和解释&#xff0c;希望可以帮助到你们。 文章…

openGauss学习笔记-84 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署服务器优化:x86

文章目录 openGauss学习笔记-84 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署服务器优化&#xff1a;x8684.1 BIOS84.2 操作系统环境设置84.3 网络 openGauss学习笔记-84 openGauss 数据库管理-内存优化表MOT管理-内存表特性-MOT部署服务器优化&#xff1a;x86 …

基于vue+Element Table Popover 弹出框内置表格的封装

文章目录 项目场景&#xff1a;实现效果认识组件代码效果分析 封装&#xff1a;代码封装思路页面中使用 项目场景&#xff1a; 在选择数据的时候需要在已选择的数据中对比选择&#xff0c;具体就是点击一个按钮&#xff0c;弹出一个小的弹出框&#xff0c;但不像对话框那样还需…

[DS资源推荐] Data Structure 严书配套代码

下图引入自康建伟老师博客 Github地址 使用说明&#xff1a;康老师博客 使用感受&#xff1a;Orz&#xff01;非常非常非常全面&#xff01;终于能看得下去严书了…

UWB技术在汽车智能制造的应用

返修区车辆管理项目 应用背景 在车辆总装生产线中&#xff0c;车辆下线后检测与返修是最后一个关键环节&#xff0c;整车一旦下线&#xff0c;由于流水线装配工艺、来料等原因&#xff0c;可能会出现部分整车存在瑕疵&#xff0c;进而进入返修区域待检。由于可能出现问题的不确…

区块链(9):java区块链项目的Web服务实现之实现web服务

1 引入pom依赖 <dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-server</artifactId><version>9.4.8.v20171121</version></dependency><dependency><groupId>org.eclipse.jetty</groupId…

SpringCloud Alibaba - 基于 FeignClient 整合 Sentinel,实现“线程隔离”和“熔断降级”

目录 一、FeignClient 整合 Sentinel 1.1、整合原因 1.2、实现步骤 1.2.1、修改 OrderService 中的 application.yml 文件 1.2.2、给 FeignClient 编写失败后的降级逻辑 二、线程隔离 2.1、线程隔离的两种方式 2.1.1、线程池隔离 2.1.2、信号量隔离&#xff08;Sentin…

【自定义类型】--- 位段、枚举、联合

&#x1f493;博客主页&#xff1a;江池俊的博客⏩收录专栏&#xff1a;C语言进阶之路&#x1f449;专栏推荐&#xff1a;✅C语言初阶之路 ✅数据结构探索&#x1f4bb;代码仓库&#xff1a;江池俊的代码仓库&#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐ 文…

智慧公厕与传统公共厕所对比五大优势是什么?

随着科技的不断发展&#xff0c;智慧公厕成为城市建设的新亮点。与传统公共厕所相比&#xff0c;它具备许多独特优势和巨大的价值。本文将以智慧公厕领先厂家广州中期科技有限公司&#xff0c;大量精品案例项目实景实例实图&#xff0c;深入探讨智慧公厕的各个方面的特点&#…