机器学习的超参数 、训练集、归纳偏好

一、介绍

超参数(Hyperparameters)和验证集(Validation Set)是机器学习中重要的概念,用于调整模型和评估其性能。

超参数: 超参数是在机器学习模型训练过程中需要手动设置的参数,而不是从数据中学习得到的。这些参数影响模型的学习和泛化能力,例如学习速率、正则化项的强度、模型复杂度等。选择适当的超参数对于模型的性能和泛化能力至关重要。

超参数的一些示例:

  • 树的数量或树的深度
  • 矩阵分解中潜在因素的数量
  • 学习率(多种模式)
  • 深层神经网络隐藏层数
  • k均值聚类中的簇数

训练集、验证集、测试集:

通常,我们将数据分成三部分:训练集(用于模型的训练)、验证集(用于超参数调整和模型性能评估)、测试集(用于最终模型的性能评估,模型未在测试集上进行过任何调整或训练)。验证集的作用是避免在测试集上过度拟合,因为模型在测试集上的性能应该反映其在实际应用中的性能。

二、归纳偏好

机器学习算法在学习过程中对某种类型假设的偏好。说白了就是“什么样的模型更好”这一问题。

归纳偏好反映了模型在学习和泛化过程中对数据的某种先验假设或偏好。这些偏好可以帮助模型在从有限数据中进行归纳时做出合理的推断。

以下是一些常见的归纳偏好类型:

  1. 奥卡姆剃刀原则(Occam's Razor):奥卡姆剃刀原则认为,如果有多个解释或假设可以解释观察到的现象,那么应该选择最简单的解释。这意味着模型倾向于选择较简单的假设或模型结构,以避免不必要的复杂性。

  2. 参数共享:一些模型偏好共享参数,以减少模型的复杂度。例如,卷积神经网络(CNN)在处理图像时使用参数共享的卷积核,以捕获图像中的局部特征。

  3. 平滑性偏好:模型可能会倾向于选择平滑的解释或函数,而不是不连续或嘈杂的解释。这在回归问题中常见,其中模型趋向于生成平滑的拟合曲线。

  4. 特定领域的偏好:某些学习算法在特定领域或任务中具有特定的归纳偏好。例如,决策树算法可能倾向于生成具有更少分支的树,以提高可解释性。

  5. 先验知识:模型可以利用先验知识或领域专业知识作为归纳偏好。这可以通过正则化、先验分布或约束条件来实现。

  6. 数据平衡:某些算法可能倾向于对不平衡的数据更敏感,因此可能需要额外的处理来处理不平衡的类别。

归纳偏好在机器学习中是一个重要的概念,因为它可以影响模型的泛化性能和能力。选择合适的归纳偏好对于选择适当的模型和算法非常关键,以确保模型能够在实际应用中表现良好。

三 、机器学习的典型的流程

  1. 确定模型的一组超参数。
  2. 将原始数据划分为训练集、验证集和测试集。
  3. 用训练集训练该模型,找到使损失函数最小的最优函数。
  4. 在验证集上对最优函数的性能进行度量
  5. 重复1、2、3、4步,直到搜索完指定的超参数组合。
  6. 选择在验证集上误差最小的模型,并合并训练集和验证集作为整体训练模型,找到最优函数,选择性能最好的超参数。
  7. 在测试集上对最优函数的泛化性能进行度量,评估模型的性能。

通过这个过程,我们可以确保模型对未见过的数据的泛化能力,并且避免了在训练过程中对模型的调整过度拟合到特定的数据集。

重要的是要注意,验证集和测试集应该是独立的,模型的性能评估应该基于未曾见过的数据,以保持评估的客观性和准确性。

参考:

机器学习:超参数 、训练集、验证集、测试集、归纳偏好、经验误差与过拟合、性能度量、机器学习发展现状-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/92019.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C/C++与汇编混合编程

1. C/C调用汇编 C/C想调用汇编代码必须要注意名称修饰的问题 名称修饰(name decoration): 一种标准的C/C编译技术, 通过添加字符来修改函数名, 添加的字符指明了每个函数参数的确切类型。主要是为了支持函数重载, 但对于汇编来说其问题在于, C/C编译器让链接器去找被修饰过的名…

K8S-EverNote同步

Node污点 释义看文档就好 https://kubernetes.io/zh-cn/docs/concepts/scheduling-eviction/taint-and-toleration/ 污点是Node的属性 容忍度是Pod的属性 用来标记各自特征的,通常协同工作。 举个例子, 一个Node的污点 kubectl taint nodes node1 key1v…

算法练习10——数组为空的最少操作次数

LeetCode 100032 使数组为空的最少操作次数 给你一个下标从 0 开始的正整数数组 nums 。 你可以对数组执行以下两种操作 任意次 : 从数组中选择 两个 值 相等 的元素,并将它们从数组中 删除 。 从数组中选择 三个 值 相等 的元素,并将它们从数…

cadence SPB17.4 S032 - 使用room来放置元件

文章目录 cadence SPB17.4 S032 - 使用room来放置元件概述笔记在orcad中设置子原理图的ROOM号码在空的Allegro工程中, 放入板框在allegro中建立room备注补充 - ROOM还得留着END cadence SPB17.4 S032 - 使用room来放置元件 概述 如果在allegro中直接手工或自动放置元件, 放好…

C++ —— 单机软件加入Licence许可权限流程(附详细流程图、详细代码已持续更新..)

单机版许可证简介 笼统的说:实现一个生成授权Lic文件应用程序(我们使用),生成的Lic文件给应用程序(客户使用)启动时读取一下对比加密后的字符串或自定义格式的密钥判断是否正确。 单机版许可证执行流程 第一级比对:发布的加密许可证文件,该加密许可证文件仅可用使用的软…

计算机网络各层设备

计算机网络通常被分为七层,每一层都有对应的设备。以下是各层设备的简要介绍: 物理层(Physical Layer):负责传输二进制数据位流的物理媒体和设备,例如网线、光纤、中继器、集线器等。 数据链路层&#xf…

LeNet网络复现

文章目录 1. LeNet历史背景1.1 早期神经网络的挑战1.2 LeNet的诞生背景 2. LeNet详细结构2.1 总览2.2 卷积层与其特点2.3 子采样层(池化层)2.4 全连接层2.5 输出层及激活函数 3. LeNet实战复现3.1 模型搭建model.py3.2 训练模型train.py3.3 测试模型test…

【网络协议】传输层协议

目录 传输层协议 1.传输层的两个协议 1.1TCP和UDP的应用场景 1.2传输层协议和应用层协议的关系 2.TCP和UDP的对比(重点) (1)无连接的UDP和面向连接的TCP (2)UDP和TCP对单播、多播和广播的支持情况 (3)UDP和TCP对应用层报文的处理 (4)UDP和TCP对数…

React实现多图片预览功能、预览图上下张切换(实战示例)

前言 在React项目中,展示和预览多张图片是一种常见的需求。本篇帖子将介绍如何使用React和antd库来实现这一功能,并探讨如何在预览模态框中切换到前一张或后一张图片。 背景 我们将以一个OCR图像列表展示的示例来演示代码的运用。假设我们有一个OCR系…

Linux系统编程系列之进程间通信-信号量组

一、什么是信号量组 信号量组是信号量的一种, 是system-V三种IPC对象之一,是进程间通信的一种方式。 二、信号量组的特性 信号量组不是用来传输数据的,而是作为“旗语”,用来协调各进程或者线程工作的。信号量组可以一次性在其内…

【LeetCode】滑动窗口妙解无重复字符的最长子串

Problem: 3. 无重复字符的最长子串 文章目录 思路算法原理分析暴力枚举 哈希表滑动窗口 复杂度Code 思路 首先我们来分析一下本题的思路 如果读者有看过 长度最小的子数组 的话就可以清楚这个子串其实和子数组是一个道理,都是 连续的一段区间但是呢它们本质上还是存…

应用架构的演进:亚马逊的微服务实践

当你在亚马逊上购物时,或许不会想到,你看到的这个购物网站,其背后技术架构经历了什么样的变迁与升级。 还记得上世纪 90 年代,那个只卖书的网上书店吗?那时的亚马逊,不过是一个架构简单的网站,所有的功能都堆积在一个庞大的软件堡垒里。随着更多业务的增加、更新和迭代,这个软…

【小程序 - 基础】页面导航、页面事件、生命周期、WXS脚本_04

目录 一、页面导航 1. 什么是页面导航 2. 小程序中实现页面导航的两种方式 2.1 声明式导航 2.1.1 导航到 tabBar 页面 2.1.2 导航到非 tabBar 页面 2.1.3 后退导航 2.2 编程式导航 2.2.1 导航到 tabBar 页面 2.2.2 导航到非 tabBar 页面 2.2.3 后退导航 2.3. 导航…

从1开始的Matlab(快速入门)

MATLAB软件版本:MATLAB R2016b 本文是博主从零开始学Matlab的记录,适合第一次接触Matlab的同学阅读。 一、基础介绍 1.1界面认识 1.2变量命名 注:Matlab中的注释 %% 独占一行的注释(有上下横线分割) % 普通注释 …

C语言:选择+编程(每日一练Day9)

目录 选择题: 题一: 题二: 题三: 题四: 题五: 编程题: 题一:自除数 思路一: 题二:除自身以外数组的乘积 思路二: 本人实力有限可能对…

stm32 - 串口

stm32 - 串口 OLED显示屏 OLED显示屏 oled.h #ifndef __OLED_H #define __OLED_Hvoid OLED_Init(void); void OLED_Clear(void); void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char); void OLED_ShowString(uint8_t Line, uint8_t Column, char *String); void OLE…

深入理解 Swift 新并发模型中 Actor 的重入(Reentrancy)问题

问题现象 我们知道,Swift 5.5 引入的新并发模型极大简化了并行逻辑代码的开发,更重要的是:使用新并发模型中的 Actor 原语可以大大降低并发数据竞争的可能性。 不过,即便 Actor 有如此神奇之功效,它也不是“万能药”,仍不能防止误用带来的问题。比如:Actor 重入(Reen…

283. 多边形,《算法竞赛进阶指南》,

283. 多边形 - AcWing题库 “多边形游戏”是一款单人益智游戏。 游戏开始时,给定玩家一个具有 N 个顶点 N 条边(编号 1∼N)的多边形,如图 1 所示,其中 N4 每个顶点上写有一个整数,每个边上标有一个运算符…

数据分析方法:RFM模型

一、RFM基本原理 RFM是三个单词的缩写: 最近一次消费时间(Recency),取数的时候一般取最近一次消费记录到当前时间的间隔,比如:7天、30天、90天未到店消费;直观上,一个用户太久不到…

MySql进阶篇---006:存储引擎,索引,SQL优化,视图、存储过程、变量、流程控制、游标、存储函数、触发器

1. 存储引擎 1.1 MySQL体系结构 1).连接层 最上层是一些客户端和链接服务,包含本地sock 通信和大多数基于客户端/服务端工具实现的类似于TCP/IP的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程池的概念,为通过认证…