堆的介绍、堆的向上、 向下调整法与基本功能实现

💓博主csdn个人主页:小小unicorn
⏩专栏分类:数据结构
🚚代码仓库:小小unicorn的代码仓库🚚
🌹🌹🌹关注我带你学习编程知识

  • 二叉树的顺序结构
  • 堆的概念:
  • 堆的性质:
  • 堆的结构
  • 堆的向下调整法:
  • 建堆时间复杂度:
  • 堆的向上调整法:
  • 堆的实现:
    • 初始化堆
    • 销毁堆
    • 打印堆
    • 堆的插入:
    • 堆的删除:
    • 获取堆顶的数据:
    • 获取堆的数据个数:
    • 堆的判空:

二叉树的顺序结构

在树与二叉树中,我们知道:

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。

现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段

堆的概念:

:如果有一个关键码的集合K={k0,k1,k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足ki<=k2i+1且ki<=k2i+2(或满足ki>=k2i+1且ki>=k2i+2),其中i=0,1,2,…,则称该集合为堆。

小堆:将根结点最小的堆叫做小堆,也叫最小堆或小根堆。

大堆:将根结点最大的堆叫做大堆,也叫最大堆或大根堆。

堆的性质:

1.堆中某个结点的值总是不大于或不小于其父结点的值。

2.堆总是一棵完全二叉树。

堆的结构

在这里插入图片描述

堆的向下调整法:

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。
在这里插入图片描述
但是:向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

1.若想将其调整为小堆,那么根结点的左右子树必须都为小堆。
2.若想将其调整为大堆,那么根结点的左右子树必须都为大堆。

在这里插入图片描述

向下调整算法的基本思想(以建小堆为例):
 1.从根结点处开始,选出左右孩子中值较小的孩子。
 2.让小的孩子与其父亲进行比较。

 若小的孩子比父亲还小,则该孩子与其父亲的位置进行交换。并将原来小的孩子的位置当成父亲继续向下进行调整,直到调整到叶子结点为止。

 若小的孩子比父亲大,则不需处理了,调整完成,整个树已经是小堆了。

代码如下:

//交换函数
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}//堆的向下调整(小堆)
void AdjustDown(int* a, int n, int parent)
{//child记录左右孩子中值较小的孩子的下标int child = 2 * parent + 1;//先默认其左孩子的值较小while (child < n){if (child + 1 < n&&a[child + 1] < a[child])//右孩子存在并且右孩子比左孩子还小{child++;//较小的孩子改为右孩子}if (a[child] < a[parent])//左右孩子中较小孩子的值比父结点还小{//将父结点与较小的子结点交换Swap(&a[child], &a[parent]);//继续向下进行调整parent = child;child = 2 * parent + 1;}else//已成堆{break;}}
}

使用堆的向下调整算法,最坏的情况下(即一直需要交换结点),需要循环的次数为:h - 1次(h为树的高度)。而h = log2(N+1)(N为树的总结点数)。所以堆的向下调整算法的时间复杂度为:O(logN)

上面说到,使用堆的向下调整算法需要满足其根结点的左右子树均为大堆或是小堆才行,那么如何才能将一个任意树调整为堆,我们只需要从倒数第一个非叶子结点开始,从后往前,按下标,依次作为根去向下调整即可。
在这里插入图片描述
代码如下:

	//建堆for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(php->a, php->size, i);}

建堆时间复杂度:

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
在这里插入图片描述
利用错位相减法进行计算:
在这里插入图片描述
因此:建堆的时间复杂度为O(N)

总结:
堆的向下调整算法的时间复杂度:T(n)=O(logN)。
建堆的时间复杂度:T(n)=O(N)。

堆的向上调整法:

当我们在一个堆的末尾插入一个数据后,需要对堆进行调整,使其仍然是一个堆,这时需要用到堆的向上调整算法。
在这里插入图片描述
向上调整算法的基本思想(以建小堆为例):
 1.将目标结点与其父结点比较。
 2.若目标结点的值比其父结点的值小,则交换目标结点与其父结点的位置,并将原目标结点的父结点当作新的目标结点继续进行向上调整。若目标结点的值比其父结点的值大,则停止向上调整,此时该树已经是小堆了。

在这里插入图片描述
代码如下:

//交换函数
void Swap(HPDataType* x, HPDataType* y)
{HPDataType tmp = *x;*x = *y;*y = tmp;
}//堆的向上调整(小堆)
void AdjustUp(HPDataType* a, int child)
{int parent = (child - 1) / 2;while (child > 0)//调整到根结点的位置截止{if (a[child] < a[parent])//孩子结点的值小于父结点的值{//将父结点与孩子结点交换Swap(&a[child], &a[parent]);//继续向上进行调整child = parent;parent = (child - 1) / 2;}else//已成堆{break;}}
}

堆的实现:

初始化堆

首先,必须创建一个堆类型,该类型中需包含堆的基本信息:存储数据的数组、堆中元素的个数以及当前堆的最大容量。

typedef int HPDataType;//堆中存储数据的类型typedef struct Heap
{HPDataType* a;//用于存储数据的数组int size;//记录堆中已有元素个数int capacity;//记录堆的容量
}HP;

然后我们需要一个初始化函数,对刚创建的堆进行初始化,注意在初始化期间要将传入数据建堆。

//初始化堆
void HeapInit(HP* php, HPDataType* a, int n)
{assert(php);HPDataType* tmp = (HPDataType*)malloc(sizeof(HPDataType)*n);//申请一个堆结构if (tmp == NULL){printf("malloc fail\n");exit(-1);}php->a = tmp;memcpy(php->a, a, sizeof(HPDataType)*n);//拷贝数据到堆中php->size = n;php->capacity = n;int i = 0;//建堆for (i = (php->size - 1 - 1) / 2; i >= 0; i--){AdjustDown(php->a, php->size, i);}
}

销毁堆

为了避免内存泄漏,使用完动态开辟的内存空间后都要及时释放该空间,所以,一个用于释放内存空间的函数是必不可少的。

//销毁堆
void HeapDestroy(HP* php)
{assert(php);free(php->a);//释放动态开辟的数组php->a = NULL;//及时置空php->size = 0;//元素个数置0php->capacity = 0;//容量置0
}

打印堆

打印堆中的数据,这里用了两种打印格式。

第一种打印格式是按照堆的物理结构进行打印,即打印为一排连续的数字。

第二种打印格式是按照堆的逻辑结构进行打印,即打印成树形结构。

//求结点数为n的二叉树的深度
int depth(int n)
{assert(n >= 0);if (n>0){int m = 2;int hight = 1;while (m < n + 1){m *= 2;hight++;}return hight;}else{return 0;}
}//打印堆
void HeapPrint(HP* php)
{assert(php);//按照物理结构进行打印int i = 0;for (i = 0; i < php->size; i++){printf("%d ", php->a[i]);}printf("\n");//按照树形结构进行打印int h = depth(php->size);int N = (int)pow(2, h) - 1;//与该二叉树深度相同的满二叉树的结点总数int space = N - 1;//记录每一行前面的空格数int row = 1;//当前打印的行数int pos = 0;//待打印数据的下标while (1){//打印前面的空格int i = 0;for (i = 0; i < space; i++){printf(" ");}//打印数据和间距int count = (int)pow(2, row - 1);//每一行的数字个数while (count--)//打印一行{printf("%02d", php->a[pos++]);//打印数据if (pos >= php->size)//数据打印完毕{printf("\n");return;}int distance = (space + 1) * 2;//两个数之间的空格数while (distance--)//打印两个数之间的空格{printf(" ");}}printf("\n");row++;space = space / 2 - 1;}
}

堆的插入:

数据插入时是插入到数组的末尾,即树形结构的最后一层的最后一个结点,所以插入数据后我们需要运用堆的向上调整算法对堆进行调整,使其在插入数据后仍然保持堆的结构。

//堆的插入
void HeapPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){HPDataType* tmp = (HPDataType*)realloc(php->a, 2 * php->capacity*sizeof(HPDataType));if (tmp == NULL){printf("realloc fail\n");exit(-1);}php->a = tmp;php->capacity *= 2;}php->a[php->size] = x;php->size++;//向上调整AdjustUp(php->a, php->size - 1);
}

堆的删除:

堆的删除,删除的是堆顶的元素,但是这个删除过程可并不是直接删除堆顶的数据,而是先将堆顶的数据与最后一个结点的位置交换,然后再删除最后一个结点,再对堆进行一次向下调整。

原因:我们若是直接删除堆顶的数据,那么原堆后面数据的父子关系就全部打乱了,需要全体重新建堆,时间复杂度为O(N)。若是用上述方法,那么只需要对堆进行一次向下调整即可,因为此时根结点的左右子树都是小堆,我们只需要在根结点处进行一次向下调整即可,时间复杂度为O(log(N))。

//堆的删除
void HeapPop(HP* php)
{assert(php);assert(!HeapEmpty(php));Swap(&php->a[0], &php->a[php->size - 1]);//交换堆顶和最后一个结点的位置php->size--;//删除最后一个结点(也就是删除原来堆顶的元素)AdjustDown(php->a, php->size, 0);//向下调整
}

获取堆顶的数据:

获取堆顶的数据,即返回数组下标为0的数据。

//获取堆顶的数据
HPDataType HeapTop(HP* php)
{assert(php);assert(!HeapEmpty(php));return php->a[0];//返回堆顶数据
}

获取堆的数据个数:

获取堆的数据个数,即返回堆结构体中的size变量。

//获取堆中数据个数
int HeapSize(HP* php)
{assert(php);return php->size;//返回堆中数据个数
}

堆的判空:

堆的判空,即判断堆结构体中的size变量是否为0。

//堆的判空
bool HeapEmpty(HP* php)
{assert(php);return php->size == 0;//判断堆中数据是否为0
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/91769.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

企业风险管理策略终极指南

企业风险管理不一定是可怕的。企业风险管理是一个模糊且难以定义的主题领域。它涵盖了企业的多种风险和程序&#xff0c;与传统的风险管理有很大不同。 那么&#xff0c;企业风险管理到底是什么&#xff1f;在本文中&#xff0c;我们将确定它是什么&#xff0c;提出两种常见的…

超级好用绘图工具(Draw.io+Github)

超级好用绘图工具&#xff08;Draw.ioGithub&#xff09; 方案简介 绘图工具&#xff1a;Draw.io 存储方式&#xff1a; Github 1 Draw.io 1.2 简介 ​ 是一款免费开源的在线流程图绘制软件&#xff0c;可以用于创建流程图、组织结构图、网络图、UML图等各种类型的图表。…

JAVA 学习笔记 2年经验

文章目录 基础String、StringBuffer、StringBuilder的区别jvm堆和栈的区别垃圾回收标记阶段清除阶段 异常类型双亲委派机制hashmap和hashtable concurrentHashMap 1.7和1.8的区别java的数据结构排序算法&#xff0c;查找算法堆排序 ThreadLocal单例模式常量池synchronizedsynch…

AIOT入门指南:探索人工智能与物联网的交汇点

AIOT入门指南&#xff1a;探索人工智能与物联网的交汇点 1. 引言 随着技术的快速发展&#xff0c;人工智能&#xff08;AI&#xff09;和物联网&#xff08;IoT&#xff09;已经成为当今最热门的技术领域。当这两个领域交汇时&#xff0c;我们得到了AIOT - 一个结合了AI的智能…

二叉树题目:平衡二叉树

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;平衡二叉树 出处&#xff1a;110. 平衡二叉树 难度 4 级 题目描述 要求 给定一个二叉树&#xff0c;判断它是否…

QT配置FFmpeg出现错误原因

文章目录 QT配置ffmpeg出现&#xff1a; undefined reference to "avcodec_version"没有配置环境变量QT和FFmpeg的版本不对应直接添加FFmpeg的头文件没有在.pro文件添加路径 QT 程序异常退出没有在debug文件里面存放dll库 QT配置ffmpeg出现&#xff1a; undefined re…

了解汽车ecu组成

常用ecu框架组成&#xff1a; BCM(body control module)-车身控制模块: 如英飞凌tc265芯片&#xff1a; 车身控制单元&#xff08;BCM&#xff09;适合应用于12V和24V两种电压工作环境&#xff0c;可用于轿车、大客车和商用车的车身控制。输入模块通过采集电路采集各路开关量和…

MySQL数据查询性能如何分析--Explain介绍说明

1、Explain是什么 Explain是MySQL执行查看执行计划命令的指令&#xff0c;使用EXPLAIN关键字可以模拟优化器执行SQL查询语句&#xff0c;从而知道MySQL是如何处理你的SQL语句的。分析你的查询语句或是表结构的性能瓶颈。 2、Explain官网介绍 http://dev.mysql.com/doc/refma…

第四十三章 持久对象和SQL - 查看存储的数据

文章目录 第四十三章 持久对象和SQL - 查看存储的数据查看存储的数据SQL 生成代码的存储 第四十三章 持久对象和SQL - 查看存储的数据 查看存储的数据 本节演示对于任何持久对象&#xff0c;相同的值通过对象访问、SQL 访问和直接Global访问都是可见的。 在我们的 IDE 中&am…

设计模式7、桥接模式 Bridge

解释说明&#xff1a;将抽象部分与它的实现部分解耦&#xff0c;使得两者都能够独立变化 桥接模式将两个独立变化的维度设计成两个独立的继承等级结构&#xff08;而不会将两者耦合在一起形成多层继承结构&#xff09;&#xff0c;在抽象层将二者建立起一个抽象关联&#xff0c…

c#设计模式-结构型模式 之装饰者模式

&#x1f680;介绍 在装饰者模式中&#xff0c;装饰者类通常对原始类的功能进行增强或减弱。这种模式是在不必改变原始类的情况下&#xff0c;动态地扩展一个对象的功能。这种类型的设计模式属于结构型模式&#xff0c;因为这种模式涉及到两个类型之间的关系&#xff0c;这两个…

JS 拖拽事件

1.drag等拖拽事件 拖放是由拖动与释放两部分组成&#xff0c;拖放事件也分为被拖动元素的相关事件&#xff0c;和容器的相关事件。 被拖动元素的相关事件如下所示&#xff1a; 被拖动元素相关事件: 事件描述dragstart用户开始拖动元素时触发drag元素正在拖动时触发dragend用户…

图像处理: 马赛克艺术

马赛克 第一章 马赛克的历史渊源 1.1 马赛克 艺术中的一种表面装饰&#xff0c;由紧密排列的、通常颜色各异的小块材料&#xff08;如石头、矿物、玻璃、瓷砖或贝壳&#xff09;组成。与镶嵌不同的是&#xff0c;镶嵌是将要应用的部件放置在已挖空以容纳设计的表面中&#xff0…

面试记录_

1&#xff1a;面试杉岩数据&#xff08;python开发&#xff09; 1.1.1 选择题 for(int i0;i<n;i){for(int j0;j<n;jji) } }O(n) * (O(0) O(n/1) O(n/2) O(n/3) ... O(n/n)) 在最坏情况下&#xff0c;内部循环的迭代次数为 n/1 n/2 n/3 ... n/n&#xff0c;这是…

select完成服务器并发

服务器 #include <myhead.h>#define PORT 4399 //端口号 #define IP "192.168.0.191"//IP地址//键盘输入事件 int keybord_events(fd_set readfds); //客户端交互事件 int cliRcvSnd_events(int , struct sockaddr_in*, fd_set *, int *); //客户端连接事件 …

计算机图像处理-中值滤波

非线性滤波 非线性滤波是利用原始图像跟模版之间的一种逻辑关系得到结果&#xff0c;常用的非线性滤波方法有中值滤波和高斯双边滤波&#xff0c;分别对应cv2.medianBlur(src, ksize)方法和cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]])方法。 …

20分钟---Vue2->Vue3

Vue官网地址&#xff1a;gVue.js - The Progressive JavaScript Framework | Vue.js 选项式vs组合式 vue的两种风格&#xff0c;搬运官网源码&#xff1a; 选项式 API (Options API)​ 使用选项式 API&#xff0c;我们可以用包含多个选项的对象来描述组件的逻辑&#xff0c…

[题]欧拉函数 #欧拉函数

目录 欧拉函数一、用公式求代码 二、线性筛法求欧拉函数扩展欧拉定理 欧拉函数 AcWing 873. 欧拉函数 一、用公式求 定义&#xff1a;1 ~ N 中与 N 互质的数的个数被称为欧拉函数&#xff0c;记为ϕ(N)。 怎么求呢&#xff1f;&#xff1f; 有一个公式&#xff1a; N p1a1 X…

MASA MAUI iOS 文件下载与断点续传

文章目录 背景介绍方案及代码1、新建MAUI项目2、建立NSUrlSession会话连接3、使用NSUrlSessionDownloadTask 创建下载任务4、DidWriteData 监听下载5、DidFinishDownloading 完成下载6、CancelDownload (取消/暂停)下载7、ResumeDownload 恢复下载8、杀死进程-恢复下载 效果图总…

Python 小爬虫入门 -- 爬取专栏文章标题保存到 CSV 文件中

爬取专栏文章标题保存到 CSV 文件中目标分析网页代码及理解代码段一代码段二成果展示爬取专栏文章标题保存到 CSV 文件中 目标 从一个网页上抓取数据,并保存到一个 CSV 文件中。 具体是爬取 微机系统与接口上机实验_TD PITE型 专栏里的所有 文章标题 并 保存到 csv 文件 中…