设计模式7、桥接模式 Bridge

解释说明:将抽象部分与它的实现部分解耦,使得两者都能够独立变化
桥接模式将两个独立变化的维度设计成两个独立的继承等级结构(而不会将两者耦合在一起形成多层继承结构),在抽象层将二者建立起一个抽象关联,该关联关系类似一座桥,将两个独立的等级结构连接起来,故曰“桥接模式”
抽象类(Abstraction):定义抽象类,并包含一个对实现化对象的引用
扩充抽象类(RefinedAbstraction):是抽象化类的子类,实现父类那个中的业务方法,并通过组合关系调用实现化角色中的业务方法
实现类(Implementor):定义实现化角色的接口,供扩展抽象化角色调用
具体实现(ConcreteImplementor):给出实现化角色接口的具体实现
优点:
分离抽象和实现部分。桥接模式使用“对象间的关联关系”解耦了抽象和实现之间固有的绑定关系,使得抽象和实现可以沿着各自的维度来变化。所谓抽象和实现沿着各自维度的变化,也就是说抽象和实现不再在同一个继承层次结构中,而是“子类化”它们,使它们各自都具有自己的子类,以便任何组合子类,从而获得多维度组合对象。
在很多情况下,桥接模式可以取代多层继承方案,多层继承方案违背了“单一职责原则”,复用性较差,且类的个数非常多,桥接模式是比多层继承方案更好的解决方法,它极大减少了子类的个数。
桥接模式提高了系统的可扩展性,在两个变化维度中任意扩展一个维度,都不需要修改原有系统,符合“开闭原则”。
缺点:
桥接模式的使用会增加系统的理解与设计难度,由于关联关系建立在抽象层,要求开发者一开始就针对抽象层进行设计与编程。
桥接模式要求正确识别出系统中两个独立变化的维度,因此其使用范围具有一定的局限性,如何正确识别两个独立维度也需要一定的经验积累。
适用场景
如果一个系统需要在抽象化和具体化之间增加更多的灵活性,避免在两个层次之间建立静态的继承关系,通过桥接模式可以使它们在抽象层建立一个关联关系。
“抽象部分”和“实现部分”可以以继承的方式独立扩展而互不影响,在程序运行时可以动态将一个抽象化子类的对象和一个实现化子类的对象进行组合,即系统需要对抽象化角色和实现化角色进行动态耦合。
一个系统存在多个(≥ 2)独立变化的维度,且这多个维度都需要独立进行扩展。
对于那些不希望使用继承或因为多层继承导致系统类的个数急剧增加的系统,桥接模式尤为适用。
#pragma once
#include <iostream>
// 电器
class IElectricalEquipment
{
public:virtual ~IElectricalEquipment() {}// 打开virtual void PowerOn() = 0;// 关闭virtual void PowerOff() = 0;
};
// 电灯
class Light : public IElectricalEquipment
{
public:// 开灯virtual void PowerOn() override {std::cout << "Light is on." << std::endl;}// 关灯virtual void PowerOff() override {std::cout << "Light is off." << std::endl;}
};
// 风扇
class Fan : public IElectricalEquipment
{
public:// 打开风扇virtual void PowerOn() override {std::cout << "Fan is on." << std::endl;}// 关闭风扇virtual void PowerOff() override {std::cout << "Fan is off." << std::endl;}
};#pragma once
#include "implementor.h"
// 开关
class ISwitch
{
public:ISwitch(IElectricalEquipment* ee) { m_pEe = ee; }virtual ~ISwitch() {}// 打开电器virtual void On() = 0;// 关闭电器virtual void Off() = 0;
protected:IElectricalEquipment* m_pEe;
};
// 拉链式开关
class PullChainSwitch : public ISwitch
{
public:PullChainSwitch(IElectricalEquipment* ee) : ISwitch(ee) {}// 用拉链式开关打开电器virtual void On() override {std::cout << "Switch on the equipment with a pull chain switch." <<  std::endl;m_pEe->PowerOn();}// 用拉链式开关关闭电器virtual void Off() override {std::cout << "Switch off the equipment with a pull chain switch." <<  std::endl;m_pEe->PowerOff();}
};
// 两位开关
class TwoPositionSwitch : public ISwitch
{
public:TwoPositionSwitch(IElectricalEquipment* ee) : ISwitch(ee) {}// 用两位开关打开电器virtual void On() override {std::cout << "Switch on the equipment with a two-position switch." <<  std::endl;m_pEe->PowerOn();}// 用两位开关关闭电器virtual void Off() override {std::cout << "Switch off the equipment with a two-position switch." <<  std::endl;m_pEe->PowerOff();}
};#include "abstraction.h"
#include "implementor.h"
#ifndef SAFE_DELETE
#define SAFE_DELETE(p) { if(p){delete(p); (p)=NULL;} }
#endif
int main()
{// 创建电器 - 电灯、风扇IElectricalEquipment* light = new Light();IElectricalEquipment* fan = new Fan();/*** 创建开关 - 拉链式开关、两位开关* 将拉链式开关和电灯关联起来,将两位开关和风扇关联起来**/ISwitch* pullChain = new PullChainSwitch(light);ISwitch* twoPosition = new TwoPositionSwitch(fan);// 开灯、关灯pullChain->On();pullChain->Off();// 打开风扇、关闭风扇twoPosition->On();twoPosition->Off();SAFE_DELETE(twoPosition);SAFE_DELETE(pullChain);SAFE_DELETE(fan);SAFE_DELETE(light);getchar();return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/91756.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c#设计模式-结构型模式 之装饰者模式

&#x1f680;介绍 在装饰者模式中&#xff0c;装饰者类通常对原始类的功能进行增强或减弱。这种模式是在不必改变原始类的情况下&#xff0c;动态地扩展一个对象的功能。这种类型的设计模式属于结构型模式&#xff0c;因为这种模式涉及到两个类型之间的关系&#xff0c;这两个…

JS 拖拽事件

1.drag等拖拽事件 拖放是由拖动与释放两部分组成&#xff0c;拖放事件也分为被拖动元素的相关事件&#xff0c;和容器的相关事件。 被拖动元素的相关事件如下所示&#xff1a; 被拖动元素相关事件: 事件描述dragstart用户开始拖动元素时触发drag元素正在拖动时触发dragend用户…

图像处理: 马赛克艺术

马赛克 第一章 马赛克的历史渊源 1.1 马赛克 艺术中的一种表面装饰&#xff0c;由紧密排列的、通常颜色各异的小块材料&#xff08;如石头、矿物、玻璃、瓷砖或贝壳&#xff09;组成。与镶嵌不同的是&#xff0c;镶嵌是将要应用的部件放置在已挖空以容纳设计的表面中&#xff0…

面试记录_

1&#xff1a;面试杉岩数据&#xff08;python开发&#xff09; 1.1.1 选择题 for(int i0;i<n;i){for(int j0;j<n;jji) } }O(n) * (O(0) O(n/1) O(n/2) O(n/3) ... O(n/n)) 在最坏情况下&#xff0c;内部循环的迭代次数为 n/1 n/2 n/3 ... n/n&#xff0c;这是…

select完成服务器并发

服务器 #include <myhead.h>#define PORT 4399 //端口号 #define IP "192.168.0.191"//IP地址//键盘输入事件 int keybord_events(fd_set readfds); //客户端交互事件 int cliRcvSnd_events(int , struct sockaddr_in*, fd_set *, int *); //客户端连接事件 …

计算机图像处理-中值滤波

非线性滤波 非线性滤波是利用原始图像跟模版之间的一种逻辑关系得到结果&#xff0c;常用的非线性滤波方法有中值滤波和高斯双边滤波&#xff0c;分别对应cv2.medianBlur(src, ksize)方法和cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]])方法。 …

20分钟---Vue2->Vue3

Vue官网地址&#xff1a;gVue.js - The Progressive JavaScript Framework | Vue.js 选项式vs组合式 vue的两种风格&#xff0c;搬运官网源码&#xff1a; 选项式 API (Options API)​ 使用选项式 API&#xff0c;我们可以用包含多个选项的对象来描述组件的逻辑&#xff0c…

[题]欧拉函数 #欧拉函数

目录 欧拉函数一、用公式求代码 二、线性筛法求欧拉函数扩展欧拉定理 欧拉函数 AcWing 873. 欧拉函数 一、用公式求 定义&#xff1a;1 ~ N 中与 N 互质的数的个数被称为欧拉函数&#xff0c;记为ϕ(N)。 怎么求呢&#xff1f;&#xff1f; 有一个公式&#xff1a; N p1a1 X…

MASA MAUI iOS 文件下载与断点续传

文章目录 背景介绍方案及代码1、新建MAUI项目2、建立NSUrlSession会话连接3、使用NSUrlSessionDownloadTask 创建下载任务4、DidWriteData 监听下载5、DidFinishDownloading 完成下载6、CancelDownload (取消/暂停)下载7、ResumeDownload 恢复下载8、杀死进程-恢复下载 效果图总…

Python 小爬虫入门 -- 爬取专栏文章标题保存到 CSV 文件中

爬取专栏文章标题保存到 CSV 文件中目标分析网页代码及理解代码段一代码段二成果展示爬取专栏文章标题保存到 CSV 文件中 目标 从一个网页上抓取数据,并保存到一个 CSV 文件中。 具体是爬取 微机系统与接口上机实验_TD PITE型 专栏里的所有 文章标题 并 保存到 csv 文件 中…

GitHub配置SSH key

GitHub配置SSH key Git配置信息并生成密钥 设置用户名和密码 设置用户名 git config --global user.name "用户名" 设置邮箱 git confir --global user.email "邮箱" 生成密钥 ssh-keygen -t rsa -C "邮箱" 查看密钥 到密钥所保存的位置 复…

嵌入式Linux应用开发-第十四章查询方式的按键驱动程序

嵌入式Linux应用开发-第十四章查询方式的按键驱动程序 第十四章 查询方式的按键驱动程序_编写框架14.1 LED驱动回顾14.2 按键驱动编写思路14.3 编程&#xff1a;先写框架14.3.1 把按键的操作抽象出一个button_operations结构体14.3.2 驱动程序的上层&#xff1a;file_operation…

(高阶) Redis 7 第16讲 预热/雪崩/击穿/穿透 缓存篇

面试题 什么是缓存预热/雪崩/击穿/穿透如何做缓存预热如何避免或减少缓存雪崩穿透和击穿的区别?穿透和击穿的解决方案出现缓存不一致时,有哪些修补方案缓存预热 理论 将需要的数据提前加载到缓存中,不需要用户使用的过程中进行数据回写。(比如秒杀活动数据等) 方案 1.…

吉力宝:智能科技鞋品牌步力宝引领传统产业创新思维

在现代经济环境下&#xff0c;市场经济下产品的竞争非常的激烈&#xff0c;如果没有营销&#xff0c;产品很可能不被大众认可&#xff0c;酒香也怕巷子深&#xff0c;许多传统产业不得不面临前所未有的挑战。而为了冲出这个“巷子”&#xff0c;许多企业需要采用创新思维&#…

NLP 03(LSTM)

一、LSTM LSTM (Long Short-Term Memory) 也称长短时记忆结构,它是传统RNN的变体,与经典RNN相比&#xff1a; 能够有效捕捉长序列之间的语义关联缓解梯度消失或爆炸现象 LSTM的结构更复杂,它的核心结构可以分为四个部分去解析: 遗忘门、输入门、细胞状态、输出门 LSTM内部结构…

MyBatisPlus(六)字段映射 @TableField

字段注解&#xff08;非主键&#xff09; TableField 用于映射对象的 属性 和表中的 字段 。 当 属性名 和 字段名 差异较大的时候&#xff0c;无法通过默认的映射关系对应起来&#xff0c;就需要指定 属性名 对应 的 字段名。 官网示例 代码实例 package com.example.web.…

【网络原理】初始网络,了解概念

文章目录 1. 网络通信1.1 局域网LAN1.2 广域网WAN 2. 基础概念2.1 IP2.2 端口号 3. 认识协议4. 五元组5. 协议分层5.1 分层的作用5.2 OSI七层模型5.3 TCP/IP五层&#xff08;四层&#xff09;模型 6. 封装和分用 1. 网络通信 计算机与计算机之间是互相独立&#xff0c;是独立模…

【小沐学前端】Node.js实现UDP和Protobuf 通信(protobuf.js)

文章目录 1、简介1.1 node1.2 Protobuf 2、下载和安装2.1 node2.2 Protobuf 3、node 代码示例3.1 HTTP3.2 UDP单播3.4 UDP广播 4、Protobuf 代码示例4.1 例子:awesome.proto 结语 1、简介 1.1 node Node.js 是一个开源的、跨平台的 JavaScript 运行时环境。 Node.js 是一个开源…

Leetcode---364场周赛

题目列表 2864. 最大二进制奇数 2865. 美丽塔 I 2866. 美丽塔 II 2867. 统计树中的合法路径数目 一、最大二进制奇数 这题只要你对二进制有了解(学编程的不会不了解二进制吧)&#xff0c;应该问题不大&#xff0c;这题要求最大奇数&#xff0c;1.奇数&#xff1a;只要保证…

数据结构 | 二叉树

基本形状 可参照 数据结构&#xff1a;树(Tree)【详解】_数据结构 树_UniqueUnit的博客-CSDN博客 二叉树的性质 三种顺序遍历