[Machine learning][Part3] numpy 矢量矩阵操作的基础知识

很久不接触数学了,machine learning需要用到一些数学知识,这里在重温一下相关的数学基础知识

矢量

矢量是有序的数字数组。在表示法中,矢量用小写粗体字母表示。矢量的元素都是相同的类型。例如,矢量不包含字符和数字。数组中元素的数量通常被称为维度,数组中元素的数量通常被称为维度,可以使用索引引用矢量的元素。在数学设置中,索引通常从 1 到 n。在计算机科学和这些实验室中,索引通常从 0 运行到 n-1。下面是两个的对比,在计算机中我们使用的是左边code的那种方式,也就是0到n-1

 Numpy中的阵列

NumPy 的基本数据结构是一个可索引的 n 维数组,其中包含相同类型 (dtype) 的元素。

一维向量的操作:

向量创建
创建一个指定shape的一维向量,参数可以是整数、元祖等等,参数表示要创建的序列的shape
a= np.zeros(4); print(f"np.zeros(4) :   a = {a}, a shape = {a.shape}, a data type = {a.dtype}")
a= np.zeros((4,)); print(f"np.zeros(4,) :  a = {a}, a shape = {a.shape}, a data type = {a.dtype}")
a= np.random.random_sample(4); print(f"np.random.random_sample(4): a = {a}, a shape = {a.shape}, a data type = {a.dtype}")
创建一个不指定shape的一维向量
a = np.arange(4.); print(f"np.arange(4.):     a = {a}, a shape = {a.shape}, a data type = {a.dtype}")
a = np.random.rand(4);  print(f"np.random.rand(4): a = {a}, a shape = {a.shape}, a data type = {a.dtype}")
创建指定值的一维向量
a = np.array([5, 4, 3, 2]); print(f"np.array([5,4,3,2]):  a = {a},     a shape = {a.shape}, a data type = {a.dtype}")
a = np.array([5., 4, 3, 2]); print(f"np.array([5.,4,3,2]): a = {a}, a shape = {a.shape}, a data type = {a.dtype}")
向量操作
获取向量元素:通过index和切片可以获得,这个和列表的操作相似。
  • 通过index获得:
a = np.arange(10)
print(a)
# 获取Index = 2的元素
print(f"a[2].shape: {a[2].shape} a[2]  = {a[2]}, Accessing an element returns a scalar")# 获取最后一个元素
print(f"a[-1]={a[-1]}")# index 必须在向量有效范围以内,否则会报错
try:c = a[10]
except Exception as e:print(e)
  • 切片获取元素
# 切片操作通过(start:stop:step)这个三个参数来控制要获取的元素,
# 切片操作是左闭右开,也就是包括index=start的值,但是不包括index=stop的值
# 向量切片操作
a = np.arange(10)
print(f"a         = {a}")#获取向量中的从index=2开始到Index=7结束的5个元素, 第三个参数1表示step=1,代表连续取值 (start:stop:step)
c = a[2:7:1];     print("a[2:7:1] = ", c)# 获取向量中的从index=2开始到Index=7结束的元素, 第三个参数1表示step=2,代表隔一个index取一个值 (start:stop:step)
c = a[2:7:2];     print("a[2:7:2] = ", c)# 取index 大于3的所有值
c = a[3:];        print("a[3:]    = ", c)# 取index小于3的所有值
c = a[:3];        print("a[:3]    = ", c)# 取所有的值
c = a[:];         print("a[:]     = ", c)
  • 单个向量的操作
a = np.array([1, 2, 3, 4])
print(f"a:       {a}")
# 将向量中的元素全部变为相反数
b = -a
print(f"b:      {b}")
# 计算向量中所有元素的和并返回一个和的标量
b = np.sum(a)
print(f"b = np.sum(a) : {b}")
# 求向量的平均值
b = np.mean(a)
print(f"b = np.mean(a): {b}")
# 对向量中每个元素求平法
b = a**2
print(f"b = a**2      : {b}")
  • 对向量元素的操作,numpy很多对数字的操作也都是用于向量的
# 向量a+向量b, 两个向量长度必须相同,不然会报error
a = np.array([1, 2, 3, 4])
b= np.array([-1, -2, 3, 4])print(f"Binary operators work element wise: {a + b}")# 标量和向量的操作a = np.array([1, 2, 3, 4])
b = 5 * a
print(f"b = 5 * a : {b}")
  • 向量与向量的点积

自定义一个实现点积的方法:

def my_dot(a,b):"""Compute the dot product of two vectorsArgs:a (ndarray (n,)):  input vectorb (ndarray (n,)):  input vector with same dimension as aReturns:x (scalar):"""x = 0for i in range(a.shape[0]):x= x+a[i]*b[i]return x# test my_dot()a = np.array([1,2,3,4])
b = np.array([-1, 4, 3, 2])print(f"my_dot(a, b) = {my_dot(a, b)}")

使用Numpy中的点积方法:

# 使用numpy中的dot来计算点积,返回一个标量
a = np.array([1, 2, 3, 4])
b = np.array([-1, 4, 3, 2])
c = np.dot(a, b)
print(f"NumPy 1-D np.dot(a, b) = {c}, np.dot(a, b).shape = {c.shape} ")
c = np.dot(b, a)
print(f"NumPy 1-D np.dot(b, a) = {c}, np.dot(a, b).shape = {c.shape} ")

然后对上面两种计算点积的方法做个效率上的对比


# 对比一下numpy 的dot和自己写的my_dot的效率如何,可以看出numpy中的效率要高很多
np.random.seed(1)
a = np.random.rand(10000000)  # very large arrays
b = np.random.rand(10000000)tic = time.time()  # capture start time
c = np.dot(a, b)
toc = time.time()  # capture end timeprint(f"np.dot(a, b) =  {c:.4f}")
print(f"Vectorized version duration: {1000*(toc-tic):.4f} ms ")tic = time.time()  # capture start time
c = my_dot(a,b)
toc = time.time()  # capture end timeprint(f"my_dot(a, b) =  {c:.4f}")
print(f"loop version duration: {1000*(toc-tic):.4f} ms ")del(a);del(b)  #remove these big arrays from memory

运行结果为:可以看到numpy的耗时要少很多

my_dot(a, b) = 24
NumPy 1-D np.dot(a, b) = 24, np.dot(a, b).shape = () 
NumPy 1-D np.dot(b, a) = 24, np.dot(a, b).shape = () 
np.dot(a, b) =  2501072.5817
Vectorized version duration: 6.5184 ms 
my_dot(a, b) =  2501072.5817
loop version duration: 2430.3420 ms 

矩阵

矩阵是一个二维阵列,里面的元素都是同一类型的。一般用大写黑体字母表示。用两个下标m,n表示,m表示行数,n表示列数。通过两个下标可以访问指定的元素

矩阵操作

创建矩阵

与创建向量的方法一样,只是这里的参数要换成元祖
a = np.zeros((1, 5))
print(f"a shape = {a.shape}, a = {a}")a = np.zeros((2, 1))
print(f"a shape = {a.shape}, a = {a}")a = np.random.random_sample((1, 1))
print(f"a shape = {a.shape}, a = {a}")# 2.创建指定元素的矩阵
a= np.array([[5],[4],[3]])
print(f" a shape = {a.shape}, np.array: a = {a}")

矩阵的操作

# 3.矩阵的操作
# 3.1 下标访问
# reshape 是一种比较方便的方法创建矩阵,
a = np.arange(6).reshape(-1, 2) #reshape(-1,2) 表示生成一个6/2行,2列的矩阵,也就是3行两列的矩阵
print(f"a.shape:{a.shape},\na={a}")
# 访问一个元素
print(f"\na[2.0].shape:{a[2:0].shape},a[2,0]={a[2:0]}, type(a[2,0])={type(a[2,0])} Accessing an element returns a scalar\n")
# 访问一行
print(f"a[2].shape:{a[2].shape},a[2] = {a[2]},type(a[2]) = {type(a[2])}")# 3.2切片访问
a = np.arange(20).reshape(-1, 10)
print(f"a=\n{a}")# 访问一行中5个连续的元素(start:stop:step)
print("a[0,2:7:1]=",a[0, 2:7:1], "a[0,2:7:1].shape=", a[0, 2:7:1].shape, "a-1D array")# 访问两行中5个连续的元素(start:stop:step)
print("a[:, 2:7:1] = \n", a[:, 2:7:1], ",  a[:, 2:7:1].shape =", a[:, 2:7:1].shape, "a 2-D array")# 访问矩阵所有元素
print("a[:,:] = \n", a[:,:], ",  a[:,:].shape =", a[:,:].shape)# 访问一行中的所有元素,方法1
print("a[1,:] = ", a[1,:], ",  a[1,:].shape =", a[1,:].shape, "a 1-D array")
# 访问一行中的所有元素,方法2
print("a[1]   = ", a[1],   ",  a[1].shape   =", a[1].shape, "a 1-D array")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/91551.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在比特币上支持椭圆曲线 BLS12–381

通过使用智能合约实现来支持任何曲线 BLS12–381 是一种较新的配对友好型椭圆曲线。 与常用的 BN-256 曲线相比,BLS12-381 的安全性明显更高,并且安全目标是 128 位。 所有其他区块链,例如 Zcash 和以太坊,都必须通过硬分叉才能升…

C++核心编程

C核心编程 C核心编程1 内存分区模型1.1 程序运行前1.2 程序运行后1.3 new操作符 2 引用2.1 引用的基本使用2.2 引用注意事项2.3 引用做函数参数2.4 引用做函数返回值2.5 引用的本质2.6 常量引用 3 函数提高3.1 函数默认参数3.2 函数占位参数3.3 函数重载3.3.1 函数重载概述3.3.…

【Django 笔记】第一个demo

1. pip 安装 2. django 指令 D:\software\python3\anconda3\Lib\site-packages\django\bin>django-adminType django-admin help <subcommand> for help on a specific subcommand.Available subcommands:[django]checkcompilemessagescreatecachetabledbshelldiff…

精彩回顾 | 迪捷软件亮相2023世界智能网联汽车大会

2023年9月24日&#xff0c;2023世界智能网联汽车大会&#xff08;以下简称大会&#xff09;在北京市圆满落幕。迪捷软件北京参展之行圆满收官。 本次大会由工业和信息化部、公安部、交通运输部、中国科学技术协会、北京市人民政府联合主办&#xff0c;是我国首个经国务院批准的…

WPF中的控件

内容控件&#xff1a;label、border Window控件 Label控件 Border控件 内容控件 Button控件 点击取消按钮关闭程序&#xff1b;点击登录按钮打开BorderWindow窗口。 TextBox控件 PasswordBox控件 TextBlock控件 加载窗口时显示TextBlock中的内容 RadioButton控件 CheckBox控件…

Docker清理

title: “Mysql安装” createTime: 2022-01-04T20:07:3108:00 updateTime: 2022-01-04T20:07:3108:00 draft: false author: “name” tags: [“mysql”] categories: [“docker”] description: “测试的” docker-mysql安装部署文档 文章目录 title: "Mysql安装" …

413 Request Entity Too Large问题

问题背景 在某系统中上传文件时&#xff0c;如果文件大小超过了一定范围就会爆 413 Request Entity Too Large 问题。 原因 在使用 nginx 反向代理后台服务时&#xff0c;如果请求体中过大&#xff0c;超过了默认的 1M 则会爆该错误。 解决方案 在 nginx 中&#xff0c;指…

信号类型(雷达)——脉冲雷达(四)

系列文章目录 《信号类型&#xff08;雷达通信&#xff09;》 《信号类型&#xff08;雷达&#xff09;——雷达波形认识&#xff08;一&#xff09;》 《信号类型&#xff08;雷达&#xff09;——连续波雷达&#xff08;二&#xff09;》 《信号类型&#xff08;雷达&…

【Java 进阶篇】深入理解 JDBC:Java 数据库连接详解

数据库是现代应用程序的核心组成部分之一。无论是 Web 应用、移动应用还是桌面应用&#xff0c;几乎都需要与数据库交互以存储和检索数据。Java 提供了一种强大的方式来实现与数据库的交互&#xff0c;即 JDBC&#xff08;Java 数据库连接&#xff09;。本文将深入探讨 JDBC 的…

力扣 -- 10. 正则表达式匹配

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:bool isMatch(string s, string p) {int ms.size();int np.size();//处理后续映射关系s s;//处理后续映射关系p p;vector<vector<bool>> dp(m1,vector<bool>(n1));//初始化dp[0][0]true…

【开发篇】十、Spring缓存:手机验证码的生成与校验

文章目录 1、缓存2、用HashMap模拟自定义缓存3、SpringBoot提供缓存的使用4、手机验证码案例完善 1、缓存 缓存是一种介于数据永久存储介质与数据应用之间的数据临时存储介质使用缓存可以有效的减少低速数据读取过程的次数&#xff08;例如磁盘IO&#xff09;&#xff0c;提高…

排序算法之【快速排序】

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…

YOLOv8改进算法之添加CA注意力机制

1. CA注意力机制 CA&#xff08;Coordinate Attention&#xff09;注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息&#xff0c;以便模型可以更好地理解不同位置之间的关系。如下图&#xff1a; 1. 输入特…

Error: Activity class {xxx.java} does not exist

git切换到不同的branch之后&#xff0c;报下面的错误&#xff1a; Error: Activity class {xxx.java} does not exist 解决方案&#xff1a; 首先clean 然后会删除build目录 然后点击&#xff1a;Invalidate Caches Android Studio重启&#xff0c;然后重新build即可。

数据链路层 MTU 对 IP 协议的影响

在介绍主要内容之前&#xff0c;我们先来了解一下数据链路层中的"以太网" 。 “以太网”不是一种具体的网络&#xff0c;而是一种技术标准&#xff1b;既包含了数据链路层的内容&#xff0c;也包含了一些物理层的内容。 下面我们再来了解一下以太网数据帧&#xff…

【Java 进阶篇】MySQL 事务详解

在数据库管理中&#xff0c;事务是一组SQL语句的执行单元&#xff0c;它们被视为一个整体。事务的主要目标是保持数据库的一致性和完整性&#xff0c;即要么所有SQL语句都成功执行&#xff0c;要么所有SQL语句都不执行。在MySQL中&#xff0c;事务起到了非常重要的作用&#xf…

Linux文件查找,别名,用户组综合练习

1.文件查看: 查看/etc/passwd文件的第5行 [rootserver ~]# head -5 /etc/passwd root:x:0:0:root:/root:/bin/bash bin:x:1:1:bin:/bin:/sbin/nologin daemon:x:2:2:daemon:/sbin:/sbin/nologin adm:x:3:4:adm:/var/adm:/sbin/nologin lp:x:4:7:lp:/var/spool/lpd:/sbin/nologi…

【实践成果】Splunk 9.0 Configuration Change Tracking

Splunk 9.0 引入了新的功能&#xff0c;一个很重要的一个&#xff0c;就是跟踪conguration 文件的变化&#xff1a; 这个很重要的特性&#xff0c;在splunk 9.0 以后才引入&#xff0c;就看server.conf 配置中&#xff0c;9.0 以后的版本才有&#xff1a; server.conf - Splu…

数据集笔记:纽约花旗共享单车od数据

花旗共享单车公布的其共享单车轨迹数据&#xff0c;包括2013年-2021年曼哈顿、布鲁克林、皇后区和泽西城大约14500辆自行车和950个站点的共享单车轨迹数据 数据地址&#xff1a;Citi Bike System Data | Citi Bike NYC | Citi Bike NYC 性别&#xff08;0未知&#xff1b;1男&…

详解分布式搜索技术之elasticsearch

目录 一、初识elasticsearch 1.1什么是elasticsearch 1.2elasticsearch的发展 1.3为什么学习elasticsearch? 1.4正向索引和倒排索引 1.4.1传统数据库采用正向索引 1.4.2elasticsearch采用倒排索引 1.4.3posting list ​1.4.4总结 1.5 es的一些概念 1.5.1文档和字段 …