【数据结构】队列和栈

大家中秋节快乐,玩了好几天没有学习,今天分享的是栈以及队列的相关知识,以及栈和队列相关的面试题

1.栈

1.1栈的概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端
称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。
压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶。
在这里插入图片描述

1.2栈的实现

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。

栈的接口函数

// 初始化栈
voidStackInit(Stack*ps); 
// 入栈
voidStackPush(Stack*ps, STDataTypedata); 
// 出栈
voidStackPop(Stack*ps); 
// 获取栈顶元素
STDataTypeStackTop(Stack*ps); 
// 获取栈中有效元素个数
intStackSize(Stack*ps); 
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 intStackEmpty(Stack*ps); 
// 销毁栈
voidStackDestroy(Stack*ps); 

栈的实现

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>typedef struct Stack//定义一个栈的结构体变量	
{int * a;int top; // 栈顶int capacity; // 容量
}Stack;
void StackInit(Stack* ps)
{assert(ps);//断言,防止为空指针ps->a = NULL;//所指向的地址为空ps->capacity = ps->top = 0;//容量和栈中元素个数均为0
}
void StackPush(Stack* ps, int data)
{assert(ps);if (ps->capacity == ps->top)//如果栈中的元素个数等于栈的容量时考虑扩容,{int newcapcity = ps->capacity == 0 ? 4 : ps->capacity * 2;//如果刚开始时都等于0,就先给4个空间大小,后面如果满的话,容量扩大1倍int* newnode = (int*)realloc(ps->a,sizeof(int)* newcapcity);//申请空间,将申请好的空间首地址传给newnode指针assert(newnode);//断言,防止malloc失败ps->a = newnode;//将newnode保存的申请空间的首地址传给ps->a,让ps->a指向创建好的空间ps->capacity = newcapcity;//容量大小更新为新容量大小}ps->a[ps->top] = data;//像存数组一样存数据ps->top++;//指向下一个
}
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps)
{assert(ps);return ps->top ==0;//ps->top为栈中元素个数.==0栈中无元素,无元素要返回1, 无元素ps->t0p==0,这个表达式结果是1,返回1;}
// 出栈
void StackPop(Stack* ps)
{assert(ps);assert(!StackEmpty(ps));//防止栈内无元素,继续出栈ps->top--;
}
// 获取栈顶元素
int StackTop(Stack* ps)
{assert(ps);assert(!StackEmpty(ps));return ps->a[ps->top - 1];//ps->top为栈中元素个数,由于数组下标是从0开始,所以栈顶元素下标为ps->top-1;}
// 获取栈中有效元素个数
int StackSize(Stack* ps)
{assert(ps);return ps->top;}
// 销毁栈
void StackDestroy(Stack* ps)
{assert(ps);free(ps->a);//free掉动态申请的内存ps->a = NULL;//防止野指针ps->capacity = ps->top = 0;//容量和栈中元素个数置为0}

栈的功能测试

int main()
{Stack st;StackInit(&st);StackPush(&st, 1);StackPush(&st, 2);StackPush(&st, 3);StackPush(&st, 4);while (!StackEmpty(&st)){printf("%d",  StackTop(&st));StackPop(&st);}StackDestroy(&st);}

在这里插入图片描述
实现了栈的后入先出

2.队列

2.1队列的概念及结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾出队列:进行删除操作的一端称为队头
在这里插入图片描述

队列的实现

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,效率会比较低

队列的接口函数

// 初始化队列
voidQueueInit(Queue*q); 
// 队尾入队列
voidQueuePush(Queue*q, QDataTypedata); 
// 队头出队列
voidQueuePop(Queue*q); 
// 获取队列头部元素
QDataTypeQueueFront(Queue*q); 
// 获取队列队尾元素
QDataTypeQueueBack(Queue*q); 
// 获取队列中有效元素个数
intQueueSize(Queue*q); 
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 intQueueEmpty(Queue*q); 
// 销毁队列
voidQueueDestroy(Queue*q);

队列的实现

typedef struct QListNode
{struct QListNode* next;//保存结点的下一个结点的地址int  data;//该节点的数据
}QNode;
typedef struct Queue
{QNode* front;QNode* tail;
}Queue;//定义一个队列结构体,指向队列的前结点和尾结点
// 初始化队列
void QueueInit(Queue* q)
{assert(q);q->front = q->tail = NULL;//头节点尾结点置为NULL}
// 队尾入队列
void QueuePush(Queue* q, int data)
{assert(q);QNode* newnode = (QNode*)malloc(sizeof(QNode));//新结点申请空间assert(newnode);//防止申请失败newnode->next = NULL;//新节点的下一个结点的地址为空,不保存newnode->data = data;//新结点的数据if (q->front == NULL)//没有一个结点{q->front = q->tail = newnode;//就让指向头节点和指向尾结点的指针指向新结点}else//有结点{q->tail->next = newnode;//新结点尾插到后面q->tail = newnode;//移动指向尾结点的指针到队列末尾结点,也就是新结点}}// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q)
{return q->front == NULL;//如果没有结点,则q->front==NULL,表达式成立返回1,表明队列为空}// 队头出队列
void QueuePop(Queue* q)
{assert(q);assert(!QueueEmpty(q));//防止队列为空在出数据if (q->front->next == NULL)//如果只有一个结点{q->front = q->tail ==NULL;//那就把这个结点置空,指向头结点指针和指向尾结点的指针指向空}else{QNode* next = q->front->next;//保存下一个结点的地址free(q->front);//从头结点开始释放一个结点,也就是头删q->front = next;//指向头结点的指针移动到下一个位置}}
// 获取队列头部元素
int QueueFront(Queue* q)
{assert(q);assert(q->front);//防止头节点为空return q->front->data;//头结点数据}
// 获取队列队尾元素
int QueueBack(Queue* q)
{assert(q);assert(q->tail);//防止尾节点为空return q->tail->data;//尾节点数据}
// 获取队列中有效元素个数
int QueueSize(Queue* q)
{int size = 0;//记录元素个数变量assert(q);QNode* cur = q->front;//遍历队列的指针先指向头while (cur){size++;//遍历记数cur = cur->next;}return size;//返回有效数据个数
}
// 销毁队列
void QueueDestroy(Queue* q)
{assert(q);QNode* cur = q->front;//遍历队列的指针while (cur){QNode* next = cur->next;//保存下一个节点的地址free(cur);//释放掉当前cur指针指向当前位置的空间cur = next;//指向下一个位置}q->front = q->tail = NULL;//防止野指针}

队列功能测试

int main()
{Queue st;QueueInit(&st);QueuePush(&st, 1);QueuePush(&st, 2);QueuePush(&st, 3);QueuePush(&st, 4);while (!QueueEmpty(&st)){printf("%d ", QueueFront(&st));QueuePop(&st);}QueueDestroy(&st);}

在这里插入图片描述

3.栈和队列面试题

20.有效的括号
在这里插入图片描述

思路:定义一个栈,将之前的功能都添在前面,使用栈解决这个问题,就是遍历这个字符串,如果是左括号的话,就入栈,然后s++,遇到右括号的话就取出栈顶元素,和这个右括号匹配,匹配上了就出栈栈顶元素,然后s++;没匹配上说明匹配不上,直接return false;当不是左括号的时候,出现右括号时,可能栈里还没有左括号,此时也匹配不上,直接return false;当遍历完s字符串后(s字符串一直是左括号),此时也属于匹配不上,就是判断栈中是否有元素,有元素都是左括号,然后就判空函数返回0==false,(当然定义栈需要初始化栈,和销毁栈)。

代码实现:

typedef struct Stack
{char* a;int top; // 栈顶int capacity; // 容量
}Stack;
void StackInit(Stack* ps)
{assert(ps);ps->a = NULL;ps->capacity = ps->top = 0;
}
void StackPush(Stack* ps, int data)
{assert(ps);if (ps->capacity == ps->top){int newcapcity = ps->capacity == 0 ? 4 : ps->capacity * 2;char* newnode = (char*)realloc(ps->a,sizeof(char) * newcapcity);assert(newnode);ps->a = newnode;ps->capacity = newcapcity;}ps->a[ps->top] = data;ps->top++;
}
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps)
{assert(ps);return ps->top == 0;}
// 出栈
void StackPop(Stack* ps)
{assert(ps);assert(!StackEmpty(ps));ps->top--;
}
// 获取栈顶元素
char StackTop(Stack* ps)
{assert(ps);assert(!StackEmpty(ps));return ps->a[ps->top - 1];}
// 获取栈中有效元素个数
int StackSize(Stack* ps)
{assert(ps);return ps->top;}
// 销毁栈
void StackDestroy(Stack* ps)
{assert(ps);free(ps->a);ps->a = NULL;ps->capacity = ps->top = 0;}bool isValid(char * s){
Stack st;
StackInit(&st);
while(*s)
{if(*s=='['||*s=='('||*s=='{')//左括号入栈{StackPush(&st,*s);s++;//移动到下一个字符位置}else{if(StackEmpty(&st))//可能出现无左括号return false;char top=StackTop(&st);//获取栈顶元素if(*s==']'&&top=='['||*s=='}'&&top=='{'||*s==')'&&top=='(')//匹配上就出栈{	StackPop(&st);s++;//移动下一个字符位置}elsereturn false;//匹配不上直接return false}}
int ret=StackEmpty(&st);// s字符串全是左括号,全部入栈,栈内不为空return 0匹配不上
StackDestroy(&st);//销毁栈
return ret;}

225.用队列实现栈
在这里插入图片描述
思路:队列是先进先出,而栈是后进先出,要用两个队列实现栈,一个队列是空的,然后要出栈栈顶元素,也就是队尾元素,可以先将队尾元素的前面的所有元素都入另一个空的队列,然后在pop这个队尾的元素,就能实现后进的先出,由于两个队列构成的栈,将一个队列中的元素入另一个队列,肯定不是出栈。
1.入栈函数的实现
如果哪个队列不为空就把元素入哪个队列中,保证一个队列为空,刚开始的时候,两个队列都为空,入哪个队列都行,在第二次入队列时候,就能保证元素都入不为空的队列了
2.出栈函数的实现
当保证一个队列为空的时候,要实现对应的后入的先出,就可以将非空队列的除队尾元素其他的都入另一个队列中,当非空队列只剩一个元素时,也就是后入的这个元素,将这个元素出队列,并且不入另一个队列,就相当于出栈,出队列前用一个变量存储这个队尾元素,也就是栈顶元素。
3.返回栈顶元素函数
使用定义好的QueueBack函数返回队尾元素,也就是栈顶元素,==注意肯定返回的是非空队列的队尾元素,也就是栈顶元素
4.判断栈为空的函数
使用定义好的QueueEmpty函数,return QueueEmpty(第一个队列地址)&&QueueEmpty(第二个队列地址),当两个队列都为空的时候,QueueEmpty函数就返回1 ,return 1;表示栈为空,如果有一个队列不为空的话,与的结果就是0, return 0,就是栈不为空。
5.释放栈的函数
使用QueueDestroy,销毁两个队列,然后free掉动态申请来的空间。


//队列功能的实现
typedef struct QListNode
{struct QListNode* next;int data;
}QNode;typedef struct Queue
{QNode* front;QNode* tail;
}Queue;
void QueueInit(Queue* q)
{assert(q);q->front = q->tail = NULL;}
// 队尾入队列
void QueuePush(Queue* q, int x)
{assert(q);QNode* newnode = (QNode*)malloc(sizeof(QNode));assert(newnode);newnode->data =x;newnode->next = NULL;if (q->tail == NULL){q->tail = q->front = newnode;}else{q->tail->next = newnode;q->tail = newnode;}}
bool QueueEmpty(Queue* q)
{assert(q);return q->front == NULL;}// 队头出队列
void QueuePop(Queue* q)
{assert(q);assert(!QueueEmpty(q));if (q->front->next == NULL){free(q->tail);q->tail = q->front = NULL;}else{QNode* next = q->front->next;free(q->front);q->front = next;}}
// 获取队列头部元素
int QueueFront(Queue* q)
{assert(q);assert(q->front);return q->front->data;}
// 获取队列队尾元素
int QueueBack(Queue* q)
{assert(q);assert(q->tail);return q->tail->data;}
// 获取队列中有效元素个数
int QueueSize(Queue* q)
{assert(q);int size = 0;QNode* cur = q->front;while (cur){size++;cur = cur->next;}return size;}
// 销毁队列
void QueueDestroy(Queue* q)
{assert(q);QNode* cur = q->front;while (cur){QNode* next = cur->next;free(cur);cur = next;}q->front = q->tail = NULL;}
//队列功能实现到这里
typedef struct {
Queue a;
Queue b;   } MyStack;//定义栈MyStack* myStackCreate() {
MyStack* obj=(MyStack*)malloc(sizeof(MyStack));//给栈申请动态空间
if(obj==NULL){perror("malloc fail");}
QueueInit(&obj->a);//栈中两个队列的初始化
QueueInit(&obj->b);
return obj;//返回申请栈空间的地址}void myStackPush(MyStack* obj, int x)//入栈函数{
if(!QueueEmpty(&obj->a))//哪个队列不为空就入哪个队列
{QueuePush(&obj->a,x);}
else
{QueuePush(&obj->b,x);}}int myStackPop(MyStack* obj) 
{Queue* empty=&obj->a;//不知道哪个为空的队列,先随便保存一个Queue* nonempty=&obj->b;if(!QueueEmpty(&obj->a))//如果a队列不是空的,就将队列b的地址保存在空的指针里面{empty=&obj->b;nonempty=&obj->a;}while(QueueSize(nonempty)>1)//当非空的队列只剩下一个元素时,队尾元素,也就是栈顶元素{QueuePush(empty,QueueFront(nonempty));//将非空队列的除队尾元素全部入到另一个空的队列中QueuePop(nonempty);//队头元素出队列}int ret=QueueFront(nonempty);//循环结束,只剩下队尾元素,将队尾元素保存在变量中QueuePop(nonempty);//队尾元素出队列,并且不进另一个队列,相当于出栈return ret;//返回栈顶元素
}int myStackTop(MyStack* obj) {
if(QueueEmpty(&obj->a))
{return  QueueBack(&obj->b);}
else
{return  QueueBack(&obj->a);//哪个队列不为空,直接使用QueueBack返回不为空队列的队尾元素}
}bool myStackEmpty(MyStack* obj) 
{
return QueueEmpty(&obj->a)&&QueueEmpty(&obj->b);}void myStackFree(MyStack* obj) {QueueDestroy(&obj->a);QueueDestroy(&obj->b);free(obj);}

232.用栈实现队列
在这里插入图片描述
思路:使用两个栈实现队列,栈为后入先出,队列为后入后出,当要出队头元素,也就是栈底元素时,可以将栈顶元素一个接一个放入另一个栈中popst,然后栈底元素到另一个栈就变成了栈顶元素,然后就可以实现队头元素,也就是栈底元素先出栈。
1.入队列函数的实现
使用 StackPush函数将数据入到栈pushst中
2.出队列函数实现
将pushst栈中的栈顶元素一个接一个全部入到栈popst中,将pushst栈中的元素全部pop掉,此时popst栈顶的元素就是队头元素,用一个变量保存他,然后将popst栈顶元素pop掉,return 栈顶元素。
3.返回队列开头的元素的函数
和出队列函数大致相同,这个不需要pop掉队头元素
4.判断队列为空函数
使用StackEmpty函数,return
StackEmpty(&obj->popst)&&StackEmpty(&obj->pushst);当两个栈都为空的时候返回1 ,表示队列为空,只要有一个不为空的话返回0,表示队列不为空。
5.释放队列函数
使用StackDestroy函数销毁两个栈,然后free掉动态开辟的内存。

typedef struct Stack
{int* a;int top; // 栈顶int capacity; // 容量
}Stack;
void StackInit(Stack* ps)//初始化栈
{ps->a = NULL;ps->top = 0;ps->capacity = 0;
}
void StackPush(Stack* ps, int data)//入栈
{assert(ps);if (ps->capacity == ps->top){int newcapcity = ps->capacity == 0 ? 4 : ps->capacity * 2;int* tmp = (int*)realloc(ps->a, sizeof(int) * newcapcity);if (tmp == NULL){perror("realloc fail");}else{ps->a = tmp;ps->capacity = newcapcity;}}ps->a[ps->top] = data;ps->top++;}
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps)
{assert(ps);return ps->top ==0;}
// 出栈
void StackPop(Stack* ps)
{assert(ps);assert(!StackEmpty(ps));ps->top--;}
// 获取栈顶元素
int StackTop(Stack* ps)
{assert(ps);assert(!StackEmpty(ps));return ps->a[ps->top - 1];}
// 获取栈中有效元素个数
int StackSize(Stack* ps)
{assert(ps);return ps->top;}// 销毁栈
void StackDestroy(Stack* ps)
{assert(ps);free(ps->a);ps->a = NULL;ps->top = ps->capacity = 0;}typedef struct {
Stack popst;
Stack pushst;} MyQueue;//定义队列MyQueue* myQueueCreate() {MyQueue* obj=(MyQueue*)malloc(sizeof(MyQueue));//动态给队列申请空间StackInit(&obj->popst);   //初始化两个栈StackInit(&obj->pushst); return obj;//返回队列的地址}void myQueuePush(MyQueue* obj, int x) {StackPush(&obj->pushst,x);//入队列都入到pushst栈中}int myQueuePop(MyQueue* obj) {
if(StackEmpty(&obj->popst))//如果popst栈中为空的话
{while(StackSize(&obj->pushst))//将pushst栈中的元素全部入到popst栈中
{StackPush(&obj->popst,StackTop(&obj->pushst));//栈顶元素一个接一个放到popst的栈中StackPop(&obj->pushst);//栈顶元素出栈
}}
int ret=StackTop(&obj->popst);//变量接收popst栈顶元素的值,然后pop掉
StackPop(&obj->popst);
return ret;//返回队列头元素,也就是popst栈顶元素}int myQueuePeek(MyQueue* obj) //与上一个函数同理
{if(StackEmpty(&obj->popst))
{while(StackSize(&obj->pushst))
{StackPush(&obj->popst,StackTop(&obj->pushst));StackPop(&obj->pushst);
}}
int ret=StackTop(&obj->popst);return ret;}bool myQueueEmpty(MyQueue* obj) {return StackEmpty(&obj->popst)&&StackEmpty(&obj->pushst);}void myQueueFree(MyQueue* obj) 
{
StackDestroy(&obj->popst);
StackDestroy(&obj->pushst);
free(obj);}

622.设计循环队列
在这里插入图片描述
思路:用数组实现这个队列较简单,在开辟空间大小时,需要k个空间,我们给他开辟k+1个空间,如果尾的下一个是头的话,就说明队列满了,如果头和尾在一个地方,则队列为空,获取队首元素就是返回obj->a[obj->head]即可,获取队尾元素一般要找到obj->tail-1的位置,因为tail是后加,当存最后一个后,他的tail+1;插入元素,就让obj->a[obj->tail]=value;然后tail++;删除一个元素就让head++就行。
注意边界:
检查队列是否满的边界处理:
在这里插入图片描述
插入元素的边界处理:在这里插入图片描述
删除元素边界处理:
在这里插入图片描述
获取尾部元素的边界处理
在这里插入图片描述

typedef struct {int*a;//指向队列空间的指针int k;//队列空间大小int head;//队列头下标int tail;//队列尾下标} MyCircularQueue;MyCircularQueue* myCircularQueueCreate(int k) {
MyCircularQueue* obj=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));//给描述队列的变量创建空间
obj->a=(int *)malloc(sizeof(int)*(k+1));//给队列创建空间
obj->k=k;//队列空间大小赋值
obj->head=obj->tail=0;//初始化队列队尾队头下标
return obj;//返回创建队列信息的地址
}bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
return obj->head==obj->tail;//空的话,头下标等于尾下标
}bool myCircularQueueIsFull(MyCircularQueue* obj) {int next=obj->tail+1;//记录尾下标的下一个下标if(obj->tail==obj->k)//边界处理next=0;return next==obj->head;//相等说明tail对应的下一个元素是head,表示已经满了}bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
if(myCircularQueueIsFull(obj))//满的话直接返回return false;
obj->a[obj->tail]=value;//插入元素
obj->tail++;//尾下标更新+1
if(obj->tail==obj->k+1)//边界处理
obj->tail=0;
return true;//插入成功
}bool myCircularQueueDeQueue(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))//空的不能删除return false
return false;
obj->head++;     头下标更新+1if(obj->head==obj->k+1)//边界处理
obj->head=0;
return true;  //删除成功return true}int myCircularQueueFront(MyCircularQueue* obj) {if(myCircularQueueIsEmpty(obj))//空的话返回-1;return -1;return obj->a[obj->head];//不空返回头下标对应的元素}int myCircularQueueRear(MyCircularQueue* obj) {if(myCircularQueueIsEmpty(obj))//空的话返回-1;return -1; int prev=obj->tail-1;//记录尾下标的上一个下标if(prev==-1)//边界处理prev=obj->k; return obj->a[prev];//返回队列尾元素}void myCircularQueueFree(MyCircularQueue* obj) {free(obj->a);free(obj);}

在这里插入图片描述
先free掉obj的话,obj->a指针中存放的队列的地址置为随机值,永远free不了obj->a,存在内存泄漏,所以先free obj->a,然后free obj.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/91349.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UG\NX二次开发 通过点云生成曲面 UF_MODL_create_surf_from_cloud

文章作者:里海 来源网站:《里海NX二次开发3000例专栏》 感谢粉丝订阅 感谢 Rlgun 订阅本专栏,非常感谢。 简介 有网友想做一个通过点云生成曲面的程序,我们也试一下 效果 代码 #include "me.hpp" /*HEAD CREATE_SURF_FROM_CLOUD CCC UFUN */

安全学习_开发相关_Java第三方组件Log4jFastJSON及相关安全问题简介

文章目录 JNDI&#xff1a;(见图) Java-三方组件-Log4J&JNDILog4J&#xff1a;Log4j-组件安全复现使用Log4j Java-三方组件-FastJsonFastJson&#xff1a;Fastjson-组件安全复现对象转Json(带类型)Json转对象Fastjson漏洞复现&#xff08;大佬文章 JNDI&#xff1a;(见图) …

C# Task任务详解

文章目录 前言Task返回值无参返回有参返回 async和await返回值await搭配使用Main async改造 Task进阶Task线程取消测试用例超时设置 线程暂停和继续测试用例 多任务等最快多任务全等待 结论 前言 Task是对于Thread的封装&#xff0c;是极其优化的设计&#xff0c;更加方便了我…

PL/SQL+cpolar公网访问内网Oracle数据库

文章目录 前言1. 数据库搭建2. 内网穿透2.1 安装cpolar内网穿透2.2 创建隧道映射 3. 公网远程访问4. 配置固定TCP端口地址4.1 保留一个固定的公网TCP端口地址4.2 配置固定公网TCP端口地址4.3 测试使用固定TCP端口地址远程Oracle 前言 Oracle&#xff0c;是甲骨文公司的一款关系…

Centos 7分区失败,进入 dracut 页面,恢复操作

1. 问题场景&#xff1a; 分区失败&#xff0c;重启了虚拟机&#xff0c;导致系统进入 dracut 页面。开机显示 直接回车&#xff0c;等待重启失败的页面 自动进入了 dracut 模式(救援)。 2. 临时解决进入系统 查了一下&#xff1a;如果出现 “dracut” 提示、进入 dracut…

elementui 菜单选中优化

/** 父级菜单悬浮样式**/ .el-submenu__title:hover {color:#1890ff!important; } /** 父级菜单箭头悬浮样式**/ .el-submenu__title:hover>.el-submenu__icon-arrow{font-size: 13px!important;} /** 子菜单悬浮样式**/ .el-menu-item:hover{color:#1890ff!important; } /*…

数据结构算法--6 希尔排序和计数排序

希尔排序 希尔排序与插入排序原理相同&#xff0c;希尔排序是一种分组插入排序算法 > 首先取一个整数d1n/2&#xff0c;将元素分为d1个组&#xff0c;每组相邻两元素之间距离为d1&#xff0c;在各组内之间插入排序。 > 取第二个整数d2n/2&#xff0c;重复上述分组排序…

VBA技术资料MF62:创建形状添加文本及设置颜色

【分享成果&#xff0c;随喜正能量】须知往生净土&#xff0c;全仗信、愿。有信、愿&#xff0c;即未得三昧、未得一心不乱&#xff0c;亦可往生。且莫只以一心不乱&#xff0c;及得念佛三昧为志事&#xff0c;不复以信、愿、净念为事。。 我给VBA的定义&#xff1a;VBA是个人…

英语单词记忆学习打卡系统 微信小程序

本单词记忆系统使用了计算机语言Java和存放数据的仓库MySQL&#xff0c;采用了微信小程序模式来实现。本系统使用了框架SSM和Uni-weixin实现了单词记忆系统应有的功能&#xff0c;系统主要角色包括管理员和用户。 关键词&#xff1a;Java&#xff1b;MySQL&#xff1b;SSM  在…

【Linux】—— 详解动态库和静态库

前言&#xff1a; 本期我将要给大家讲解的是有关 动态库和静态库 的相关知识&#xff01;&#xff01;&#xff01; 目录 序言 见一见库 为什么要有库 &#xff08;一&#xff09;动态库&#xff08;.so&#xff09; 1.基本概念 2.命名规则 3.制作动态库 &#xff0…

【学习笔记】CF1817F Entangled Substrings(基本子串结构)

前置知识&#xff1a;基本子串结构&#xff0c;SAM的结构和应用 学长博客 字符串理论比较抽象&#xff0c;建议直观的去理解它 子串 t t t的扩展串定义为 ext(t) : t ′ \text{ext(t)}:t ext(t):t′&#xff0c;满足 t t t是 t ′ t t′的子串&#xff0c;且 occ(t) occ(t…

2023年十大开源项目:革新技术创新

来源整理 : 小托 | 开源社翻译组PM 翻译 : 张锋 | 开源社翻译 Open-source projects have revolutionized the world of software development by fostering innovation, collaboration, and community-driven contributions. These projects are often the backbone of countl…

PHP8的继承和多态-PHP8知识详解

我们在前面的时候讲过《面向对象编程的特点》时&#xff0c;面向对象编程具有3大特点&#xff1a;封装性、继承性和多态性。 继承和多态的根本作用就是完成代码的重用。下面就来讲解php8的继承和多态。 1继承 子类可以继承父类的所有成员变量和成员方法&#xff0c;包括构造方…

玄子Share 设计模式 GOF 全23种 + 七大设计原则

玄子Share 设计模式 GOF 全23种 七大设计原则 前言&#xff1a; 此文主要内容为 面向对象七大设计原则&#xff08;OOD Principle&#xff09;GOF&#xff08;Gang Of Four&#xff09;23种设计模式拓展的两个设计模式 简单工厂模式&#xff08;Simple Factory Pattern&#x…

Fake Maxpooling 二维滑动窗口

先对每一行求一遍滑动窗口&#xff0c;列数变为(列数-k1) 再对每一列求一遍滑动窗口&#xff0c;行数变为(行数-k1) 剩下的就是每一个窗口里的最大值啦 #include<bits/stdc.h> #define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0); #define endl \nusing nam…

【强化学习】基础概念

1. Agent (智能体) 智能体是进行决策和学习的实体&#xff0c;它能感知环境的状态&#xff0c;并基于策略采取动作以影响环境。智能体的目标是通过与环境的交互获得最大化的累积奖励。 2. Environment (环境) 环境是智能体所处的外部系统&#xff0c;它与智能体交互。环境的…

【算法】莫队

这篇博客起源于本人把一道 p o w ( 2 , n ) pow(2,n) pow(2,n) 的问题考虑成求组合数前缀和的问题qwq&#xff0c;于是接触到了这个新算法来总结一下 参考自这篇文章&#xff0c;写得太好了 首先是一道模板题 题目意思是&#xff0c;给出一个数组a&#xff0c;再给出多个区…

无人直播间

失败&#xff01;&#xff01; 采用 ffmpeg 技术进行推流 推流代码&#xff1a; 【需要将rtmp替换为你的推流地址】 ffmpeg -re -stream_loop -1 -i "rain.mp4" -c copy -f flv ""推流地址获取 以哔哩哔哩为例 点击下方链接 开播设置 - 个人中心 - …

【MATLAB源码-第39期】基于m序列/gold序列的直接扩频通信仿真,编码方式采用卷积码,调制方式采用BPSK。

1、算法描述 直接序列扩频通信系统的仿真一般包括以下几个主要步骤&#xff1a;信号产生、扩频、卷积编码、BPSK调制、信道传输、BPSK解调、卷积码译码和解扩。 信号产生&#xff1a; 首先&#xff0c;产生一个二进制数据序列作为待发送的信息位。 扩频&#xff1a; 采用m序列…

如何开始着手一篇Meta分析 | Meta分析的流程及方法

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;最早出现于“循证医学”&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面。…