区间预测 | MATLAB实现QRGRU门控循环单元分位数回归多输入单输出区间预测

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测

目录

    • 区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

1
2
3
4

基本介绍

MATLAB实现QRGRU门控循环单元分位数回归分位数回归多输入单输出区间预测。基于分位数回归的门控循环单元QRGRU的数据回归区间预测,多输入单输出模型 (Matlab完整程序和数据)
(主要应用于风速,负荷,功率)(Matlab完整程序和数据)
运行环境matlab2020及以上,输入多个特征,输出单个变量。
excel数据,方便学习和替换数据。

模型描述

分位数回归是简单的回归,就像普通的最小二乘法一样,但不是最小化平方误差的总和,而是最小化从所选分位数切点产生的绝对误差之和。如果 q=0.50(中位数),那么分位数回归会出现一个特殊情况 - 最小绝对误差(因为中位数是中心分位数)。我们可以通过调整超参数 q,选择一个适合平衡特定于需要解决问题的误报和漏报的阈值。GRU 有两个有两个门,即一个重置门(reset gate)和一个更新门(update gate)。从直观上来说,重置门决定了如何将新的输入信息与前面的记忆相结合,更新门定义了前面记忆保存到当前时间步的量。如果我们将重置门设置为 1,更新门设置为 0,那么我们将再次获得标准 RNN 模型。

程序设计

  • 完整程序和数据获取方式1,订阅《GRU门控循环单元》(数据订阅后私信我获取):MATLAB实现QRGRU门控循环单元分位数回归多输入单输出区间预测,专栏外只能获取该程序。
  • 完整程序和数据获取方式2,(资源出下载):MATLAB实现QRGRU门控循环单元分位数回归多输入单输出区间预测
% gru
layers = [ ...sequenceInputLayer(inputSize,'name','input')   %输入层设置gruLayer(numhidden_units1,'Outputmode','sequence','name','hidden1') dropoutLayer(0.3,'name','dropout_1')gruLayer(numhidden_units2,'Outputmode','last','name','hidden2') dropoutLayer(0.3,'name','drdiopout_2')fullyConnectedLayer(outputSize,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %quanRegressionLayer('out',i)];
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 参数设定
opts = trainingOptions('adam', ...'MaxEpochs',10, ...'GradientThreshold',1,...'ExecutionEnvironment','cpu',...'InitialLearnRate',0.001, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',2, ...   %2个epoch后学习率更新'LearnRateDropFactor',0.5, ...'Shuffle','once',...  % 时间序列长度'SequenceLength',1,...'MiniBatchSize',24,...'Verbose',0);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%
% 网络训练
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
y = Test.demand;
x = Test{:,3:end};
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 归一化
[xnorm,xopt] = mapminmax(x',0,1);
xnorm = mat2cell(xnorm,size(xnorm,1),ones(1,size(xnorm,2)));
[ynorm,yopt] = mapminmax(y',0,1);
ynorm = ynorm';% 平滑层flattenLayer('Name','flatten')% GRU特征学习gruLayer(50,'Name','gru1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% GRU输出gruLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130447132

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
[3] https://blog.csdn.net/kjm13182345320/article/details/127380096

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/9086.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微服务Day4——Docker

一、什么是Docker 微服务虽然具备各种各样的优势,但服务的拆分通用给部署带来了很大的麻烦。 分布式系统中,依赖的组件非常多,不同组件之间部署时往往会产生一些冲突。在数百上千台服务中重复部署,环境不一定一致,会…

npm 安装报错:源文本中存在无法识别的标记

npm install -g vue/cli 源文本中存在无法识别的标记。 所在位置 行:1 字符: 16 npm install -g <<<< vue/cli CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException FullyQualifiedErrorId : UnrecognizedToken 解决方…

064、故障处理之OMM_TiDB

oom 内存溢出&#xff0c;内存泄漏&#xff0c;相当于TiDB不能用了 TiDB Server OOM对业务的影响 TiDB Server上的业务SQL会失败业务响应时间升高前端体验变差 诊断方法 客户端应用 ERROR 2013(HY000): Lost connection to MySQL Server during query日志 dmesg -T | gr…

ARM——点灯实验

循环点灯 RCC寄存器使能GPIOE、GPIOF组寄存器 修改GPIOx组寄存器下的值 通过GPIOx_MODER寄存器设置为输出模式通过GPIOx_OTYOER寄存器设置为推挽输出类型通过GPIOx_OSPEEDR寄存器设置为低速输出通过GPIOx_PUPDR寄存器设置为禁止上下拉电阻点灯 通过GPIOx_ODR寄存器设置为高电…

excel中的vlookup如何实现根据多个条件查找?

目录 简述问题公式思路通用公式三条件查找公式实例 简述 Excel 中根据一个条件查找非常方便&#xff0c;Excel 提供了内置函数 VLOOKUP。但是实际中往往有多种情形&#xff0c;需要根据多个条件进行查找操作&#xff0c;目前没有现成的内置函数。 本篇介绍 VLOOKPCHOOSE 组合…

flask路由添加参数

flask路由添加参数 在 Flask 中&#xff0c;可以通过两种方式在路由中添加参数&#xff1a;在路由字符串中直接指定参数&#xff0c;或者通过 request 对象从请求中获取参数。 在路由字符串中指定参数&#xff1a;可以将参数直接包含在路由字符串中。参数可以是字符串、整数、…

Apipost使用教程

Apipost是一款集API调试、生成文档、Mock、测试于一体的协同工具。单个工具可以同时满足接口测试、生成/分享文档、Mock、流程测试等功能&#xff0c;还有超实用的多人多角色间实时协作的功能。将前端、后端、测试三种角色串联起来&#xff0c;从而实现工作流程无缝衔接、提高研…

(三)RabbitMQ七种模式介绍与代码演示

Lison <dreamlison163.com>, v1.0.0, 2023.06.22 七种模式介绍与代码演示 文章目录 七种模式介绍与代码演示四大交换机四种交换机介绍 工作模式简单模式&#xff08;Hello World&#xff09;工作队列模式&#xff08;Work queues&#xff09;订阅模式&#xff08;Publis…

FPGA设计时序分析一、时序路径

目录 一、前言 二、时序路径 2.1 时序路径构成 2.2 时序路径分类 2.3 数据捕获 2.4 Fast corner/Slow corner 2.5 Vivado时序报告 三、参考资料 一、前言 时序路径字面容易简单地理解为时钟路径&#xff0c;事实时钟存在的意义是为了数据的处理、传输&#xff0c;因此严…

基于Docker-compose创建LNMP环境并运行Wordpress网站平台

基于Docker-compose创建LNMP环境并运行Wordpress网站平台 1.Docker-Compose概述2.YAML文件格式及编写注意事项3.Docker-Compose配置常用字段4.Docker Compose常用命令5.使用Docker-compose创建LNMP环境&#xff0c;并运行Wordpress网站平台1. Docker Compose 环境安装下载安装查…

静态 链接

1、空间与地址的分配 现在的链接器空间分配的策略基本上都采用 “相似段合并” 的方式。通过将所有相同类型的 section 合并到一起&#xff0c;例如将所有输入目标文件的 .text 合并&#xff08;按顺序合并&#xff09;到输出文件的 .text 节中&#xff1b;然后&#xff0c;链接…

第111天:免杀对抗-JavaASM汇编CS调用内联CMSF源码特征修改Jar打包

知识点 #知识点&#xff1a; 1、ASM-CS-单汇编&内联C 2、JAVA-MSF-源码修改&打包#章节点&#xff1a; 编译代码面-ShellCode-混淆 编译代码面-编辑执行器-编写 编译代码面-分离加载器-编写 程序文件面-特征码定位-修改 程序文件面-加壳花指令-资源 代码加载面-Dll反射…

自动驾驶技术架构

自动驾驶技术架构 自动驾驶技术架构 自动驾驶关键技术 自动驾驶汽车技术架构较为复杂&#xff0c;涉及了多领域的交叉互容&#xff0c;例如汽车、交通、通信等&#xff0c;基于自动驾驶相关的软硬件、辅助开发工具、行业标准等各方面关键问题&#xff0c;自动驾驶汽车关键技术…

深度学习(二)

目录 一、神经网络 整体架构: 架构细节: 神经元个数的影响: 神经网络过拟合解决: 卷积网络 整体架构: 卷积层 边缘填充 特征尺寸计算 池化层 特征图变化 递归神经网络 一、神经网络 整体架构: 图中分别为输入层、隐层1、隐层2、输出层 通过输入层输入某数值&#xf…

机器学习之线性判别分析(Linear Discriminant Analysis)

1 线性判别分析介绍 1.1 什么是线性判别分析 线性判别分析&#xff08;Linear Discriminant Analysis&#xff0c;简称LDA&#xff09;是一种经典的监督学习算法&#xff0c;也称"Fisher 判别分析"。LDA在模式识别领域&#xff08;比如人脸识别&#xff0c;舰艇识别…

3.2.20:DTP与Datepicker实现日期的输入

【分享成果&#xff0c;随喜正能量】人生艰难自不必去回避&#xff0c;人生艰难说多了也是白说&#xff0c;为什么&#xff0c;解决不了问题&#xff0c;说了也还是那么难。。 我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高…

每日一题——多数元素

多数元素 题目链接 方法一&#xff1a;暴力解法 直接利用两层循环&#xff0c;外层循环用来枚举数组的每一个元素&#xff0c;内层循环用来计算每个元素出现的次数&#xff0c;这样就可以求出多数元素了。 显然&#xff0c;这个方法的时间复杂度为O(N^2)&#xff0c;效率太低…

关于项目,会问我什么?

作者&#xff1a;阿秀 校招八股文学习网站&#xff1a;https://interviewguide.cn 这是阿秀的第「288」篇原创 小伙伴们大家好&#xff0c;我是阿秀。 在校招求职这块&#xff0c;简历上比较重要的点就是教育背景、实习经历、项目经验三块&#xff0c;其中教育背景都到了秋招这…

C++初阶之一篇文章让你掌握string类(了解和使用)

string类及其模拟实现 1.我们为什么要学习string类2. 标准库中的string类2.1 string类的实例化标准2.2 了解string 3.string类的常用接口说明3.1 string类对象的常见构造3.2 string类对象的容量操作3.3 string类对象的元素访问3.4 string类对象的Iterators&#xff08;迭代器&a…

网络安全合规与标准的主要发展方向

网络安全合规就是避免违反网络安全有关的法律、法规、规章、合同义务以及任何安全要求&#xff0c;标准在网络安全合规工作中扮演着重要的角色。 一、标准在网络安全合规体系中的地位作用 网络安全合规体系包括网络安全有关的法律、法规、规章、其他规范性文件、及合同义务等…