3.6+铁死亡+WGCNA+机器学习

今天给同学们分享一篇3.6+铁死亡+WGCNA+机器学习的生信文章“Identification of ferroptosis related biomarkers and immune infiltration in Parkinson's disease by integrated bioinformatic analysis”,这篇文章于2023年3月14日发表在BMC Med Genomics期刊上,影响因子为3.622。
3126a0f115ec3180fa549d52330b704a.jpeg

越来越多的证据表明,铁死亡参与了帕金森病(PD)的进展。本研究旨在探讨铁死亡相关基因(FRGs)、免疫浸润和免疫检查点基因(ICGs)在帕金森病发病和发展过程中的作用。

e26fae9e100685ae7f967e121ecb403d.jpeg

图1 流程图


1. 识别关键的 WGCNA 模块和 DEGs

聚类分析后,没有样本被剔除。基于 GSE18838 数据集构建了 WGCNA 网络,以确定与 PD 相关的有意义的基因模块。选择软阈值功率为 12,无标度拓扑拟合指数 R^2 达到 0.84,平均连接度为 18.10,表明无标度网络已经建立(图 2A,B)。通过动态树切割法确定共表达基因模块,合并相似模块后,根据 MEDissThres = 0.25 进一步筛选出关键模块(图 2C,D)。然后作者分析了关键模块与临床表型之间的关系,并显示了关键模块中所有基因的热图(图 2E,F)。在分析的10个模块中,黄绿色模块与帕金森病的临床特征显著相关,被选为关键模块(cor = 0.49, p = 0.008, 图2E)。按照 q.weighted < 0.05 的标准,作者选择了 884 个基因进行后续研究。此外,作者还观察到 PD 与黄绿色模块之间的高度相关性(cor = 0.492),而黄绿色模块中的模块成员(MM)与基因重要性(GS)之间的相关性为 0.28(cor = 0.28,p = 2.3e-07,图 2G)。

807898a93744df960a3892080ab8d9b2.jpeg

图2 WGCNA 网络和模块检测


此外,通过 PCA 和不同表达分析,作者得到了 399 个 PD 和 HC 样本之间的 DEGs(图 3A,B)。通过 Venn 图(图 3C),作者筛选出了 15 个与铁突变相关的 WGCNA 基因和 179 个 WGCNA-DEGs。


f34fcfc7be6beddb4fb475d769338ef2.jpeg

图3 基因芯片的 PCA 图和不同表达基因的火山图


2.GSEA 和 GSVA

作者进行了 GSEA 和 GSVA 分析,以筛选 PD 和 HC 之间的生物学差异。图 4A、B、C 显示了 GO-BP、GO-CC 和 GO-MF 的富集分析结果。以KEGG和标志基因集为参考集,GSVA富集分析发现PI3K-AKT-mTOR信号通路、活性氧通路、P53信号通路和自噬调控参与了PD的发病机制(图4D, E)。作者还发现一些相关的免疫学通路在 PD 和 HC 之间明显富集(图 4F)。此外,KEGG通路的GSEA分析发现了PD的一些潜在通路,如自噬、细胞凋亡、坏死、NOD样受体信号通路、TNF信号通路、泛素介导的蛋白水解、细胞衰老、有丝分裂、帕金森病、酒精性肝病和中性粒细胞胞外陷阱的形成。

eaa3feb8b6e5aa73b84420bc13d3bb8e.jpeg

图4 GSVA 不同参考基因集的结果


3.通过机器学习方法筛选出的候选基因

作者使用LASSO逻辑回归算法从15个铁蛋白相关-WGCNA基因中筛选出8个基因作为PD的关键生物标志物(图5A),同时使用RF和SVM-RFE算法筛选候选基因(图5B,C)。通过三种算法得到的重叠基因被认为是候选生物标志物,最终 LPINI 和 TNFAIP3 这两个基因被认为是生物标志物(图 5D)。图 6A, B 显示了对两个特征基因进行 GSEA 分析的 KEGG 通路。LPINI涉及酒精性肝病,TNFAIP3主要与Epstein-Barr病毒感染、麻疹、坏死、NOD样受体信号通路和TNF信号通路有关。为了进一步检验 LPINI 和 TNFAIP3 对 PD 的诊断效果,作者分析了这两个基因的表达水平,并通过 GSE18838 微阵列表达矩阵进行了验证。结果发现,这两个基因在 PD 全血中均呈下调表达,且 ROC 曲线显示这两个基因具有更好的诊断潜力,LPINI 和 TNFAIP3 的 AUC 分别为 0.872(95% CI:0.723-1.000)和 0.818(95% CI:0.647-0.989)(图 6C,D)。此外,还将 GSE72267 作为验证数据集,其中包括 40 例 PD 患者和 20 例健康对照。在 NetworkAnalyst 上建立了 LPIN1 和 TNFAIP3 的 TF-miRNA 核心调控网络(图 6E)。

0ece7b12791993eb3cc20933744e5f56.jpeg

图5 使用机器学习方法识别与诊断相关的候选基因

fa9376a7ea7a994be86f137ee49e8db5.jpeg

图6 候选基因的 KEGG 通路和 GSE18838 数据集的验证


4.GO 和 KEGG 分析

为说明 179 个 WGCNA-DEG 的功能注释,进行了 GO 分析。细胞组成的 GO 分析结果如图 7A 所示。在生物过程类别中,最富集的 GO 术语是线粒体呼吸复合体 I 组装、自噬的正向调节、对活性氧的反应和 T 细胞活化/分化;在分子功能类别中,最富集的 GO 术语是 NADH 脱氢酶(泛醌)活性、MHC 蛋白结合、免疫受体活性和 ATP 代谢过程、Ras 蛋白信号转导、对活性氧的反应和 I-kappaB 激酶/NF-kappaB 信号转导的正向调节等(图 7B,C)。7B, C)。为了研究相关的信号通路,作者进行了 KEGG 和 Reactome 分析。在 Reactome 通路中,大自噬、MHC II 类抗原呈递、脂质代谢、类收费受体级联和细胞对应激的反应参与了 PD(图 7D)。此外,KEGG通路分析还显示,溶酶体、FoxO信号通路、糖尿病心肌病和癌症中的PD-L1表达及PD-1检查点通路可能与帕金森病有关(图7E)。

b138cb8be4cc7ab492a2f787db06452e.jpeg

图7 WGCNA-DEG 的 GO 和 KEGG 通路富集结果


在15个铁死亡-WGCNA基因中,显著富集的GO术语表明,细胞对TOR信号转导的反应、p53类介质的信号转导、选择性自噬、对活性氧或金属离子或氧化应激的反应、脂肪酸代谢过程和神经元死亡与铁死亡和PD相关。KEGG结果表明,mTOR信号通路、细胞衰老、中性粒细胞胞外陷阱形成、神经变性-多种疾病通路、NF-kappa B信号通路等可能在PD中发挥重要作用。


5.浸润免疫细胞的估计和相关分析

首先,作者使用 "CIBERSORT "算法,利用28个样本的基因矩阵估算了22种浸润性免疫细胞的比例。与HC的结果相比,PD样本中幼稚B细胞、浆细胞、幼稚CD4 T细胞、调节性T细胞、巨噬细胞M0和巨噬细胞M1的比例明显降低,而记忆B细胞、γδT细胞和静息树突状细胞的比例明显升高(图8A)。通过矛曼分析发现,候选基因与浸润免疫细胞之间存在正相关和负相关关系。LPINI 与幼稚 B 细胞、浆细胞和幼稚 CD4 T 细胞呈正相关,而与记忆 B 细胞、γ δ T 细胞和静息树突状细胞呈负相关。TNFAIP3 与幼稚 B 细胞、幼稚 CD4 T 细胞、调节性 T 细胞、巨噬细胞 M0 和巨噬细胞 M1 呈正相关,而与γ-δ T 细胞和静息树突状细胞呈负相关(图 8B)。

ee7d866d983d2240e8440efa8f5c0572.jpeg

图8 免疫细胞浸润状况和免疫检查点基因的表达


此外,在T细胞上表达的免疫检查点基因中,TNFRSF18、TNFRSF25、CD28、CTLA-4、ICOS、BTLA、MYLK、CD27、CD226、ADORA2A和CD40L在两组间存在显著差异(图8C)。候选基因与免疫检查点基因的相关性分析见图 8D。LPIN1与上述所有不同的ICG都有明显的相关性,但TNFAIP3仅与TNFRSF18、TNFRSF25、CD28、ICOS、MYLK、CD226、ADORA2A和CD40L有相关性。


6.帕金森病患者和健康对照组的人口统计学和临床特征

健康对照组和帕金森病患者的 RBC、Hb、Hct、单核细胞和淋巴细胞比例有显著差异(P = 0.000、P = 0.000、P = 0.000、P = 0.031)。此外,HC 和早期 PD 患者的白细胞、红细胞、血红蛋白、血色素 Hct 的差异也有统计学意义(P = 0.031、P = 0.000、P = 0.000、P = 0.000)。早期和中晚期 PD 患者的年龄、病程(年)、MDS-UPDRS Ⅲ"关 "评分、白细胞、中性粒细胞(%)、淋巴细胞(%)、中性粒细胞与淋巴细胞比值、单核细胞与淋巴细胞比值也有统计学差异(P = 0.002、P = 0.000、P = 0.000、P = 0.026、P = 0.003、P = 0.001、P = 0.002、P = 0.031)。早期和中晚期帕金森病患者的UPDRS评分有明显差异,这与两期的疾病程度相符。


7.帕金森病患者和健康对照组的 LPIN1 和 TNFAIP3 血浆水平

PD患者LPIN1的血浆浓度(105.7 ng/mL [range 56.98 to 161.3 ng/mL])明显低于HC患者(121.0 ng/mL [range 87.03 to 773.4 ng/mL])(p < 0.0001)(图9A)。与HC(20.50 pg/ml [range 5.84 to 159.5 pg/ml])相比,PD患者的TNFAIP3血浆浓度(45.91 pg/ml [range 4.61 to 193.9 pg/ml])明显升高(p < 0.0001)(图9B)。当把PD患者分为早期和中晚期时,早期PD患者血浆中LPIN1的水平(101.7 ng/mL [range 77.96 to 137.7 ng/mL])明显低于HC患者(p < 0.0001),而早期和中晚期PD患者血浆中LPIN1的水平(110.0 ng/mL [range 56.98 to 161.3 ng/mL])差异无统计学意义(p = 0.2806)(图9C)。与HC相比,早期PD患者的TNFAIP3水平(35.06 pg/mL [range 4.61 to 135.2 pg/mL])明显升高(p = 0.0407),早期PD患者与中晚期PD患者的TNFAIP3水平(50.63 pg/mL [range 7.75 to 193.9 pg/mL])也存在明显差异(p = 0.0459)(图9D)。TNFAIP3 与年龄、嗜碱性粒细胞、Hoehn 和 Yahr 量表、疾病分期的相关性较弱。

6cb10885b7e5c6c8b82e4014d455dfd9.jpeg

图9 两种生物标记物的 ELISA 验证


8.浆液性 LPIN1 和 TNFAIP3 在帕金森病中的诊断价值

应用接收者操作特征曲线(ROC)评估了LPIN1和TNFAIP3在PD中的潜在诊断价值。LPIN1和TNFAIP3对PD的ROC曲线下面积(AUC)分别为0.754(95% CI:0.659-0.849,p<0.0001,敏感性=0.771,特异性=0.692)和0.754(95% CI:0.660-0.849,p<0.0001,敏感性=0.686,特异性=0.821)(图10A)。在区分早期PD和HC时,LPIN1和TNFAIP3的AUC分别为0.817(95% CI:0.717-0.917,p<0.0001,灵敏度=0.867,特异性=0.692)和0.650(95% CI:0.507-0.794,p=0.040,灵敏度=0.667,特异性=0.718)(图10B)。然而,LPIN1 和 TNFAIP3 在区分早期和中晚期 PD 患者方面表现不佳(LPIN1:AUC = 0.599,95% CI:0.465-0.733,p = 0.146;TNFAIP3:AUC = 0.647,95% CI:0.510-0.783,p = 0.035)(图 10C)。然后,作者使用逻辑回归分析,结果表明 LPIN1 和 TNFAIP3 的组合预测效果更好(HC vs. PD,AUC = 0.833,95% CI:0.750-0.916,p < 0.0001;HC vs. 早期 PD,AUC = 0.831,95% CI:0.734-0.927,p<0.0001)(图 10D、E),而对早期和中晚期 PD 的诊断效果相对较差(AUC = 0.637,95% CI:0.505-0.768,p = 0.041)(图 10F)。

00639153f3ff8fef4fcb47bc2578be92.jpeg

图10 两种生物标记物的 ROC


总结

综上所述,作者的研究结果证实,PD血浆中LPINI和TNFAIP3的异常低表达或上调、铁败细胞和循环免疫系统反应与PD的发病机制有关。此外,铁突变相关基因与免疫检查点基因、免疫浸润等也有相关性。因此,该研究进一步加深了人们对嗜铁细胞对外周血单核细胞(主要包括淋巴细胞和单核细胞)影响机制的认识。然而,LPINI和TNFAIP3调控PD中铁死亡和免疫的具体机制尚不清楚。要探索LPINI和TNFAIP3对外周免疫细胞的生物学效应,并为PD提供可靠的临床诊断标志物,还需要更多的研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/90546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

队列的使用以及模拟实现(C++版本)

&#x1f388;个人主页:&#x1f388; :✨✨✨初阶牛✨✨✨ &#x1f43b;强烈推荐优质专栏: &#x1f354;&#x1f35f;&#x1f32f;C的世界(持续更新中) &#x1f43b;推荐专栏1: &#x1f354;&#x1f35f;&#x1f32f;C语言初阶 &#x1f43b;推荐专栏2: &#x1f354;…

C运算符和控制语句

几乎每一个程序都需要进行运算&#xff0c;对数据进行加工处理&#xff0c;否则程序就没有意义了。要进行运算&#xff0c;就需规定可以使用的运算符。 C语言的运算符范围很宽&#xff0c;把除了控制语句和输人输出以外的几乎所有的基本操作都作为运算符处理。 运算符分类1 除…

likeadmin和fastapi的bug

以下内容写于2023年8月11日 bug 1 请求体 - 多个参数 - FastAPI (tiangolo.com)中“请求体中的单一值”处&#xff0c;选python3.6&#xff0c;接口示例代码是 from typing import Unionfrom fastapi import Body, FastAPI from pydantic import BaseModel from typing_exte…

Spring Boot中配置文件介绍及其使用教程

目录 一、配置文件介绍 二、配置简单数据 三、配置对象数据 四、配置集合数据 五、读取配置文件数据 六、占位符的使用 一、配置文件介绍 SpringBoot项目中&#xff0c;大部分配置都有默认值&#xff0c;但如果想替换默认配置的话&#xff0c;就可以使用application.prop…

从零手搓一个【消息队列】项目设计、需求分析、模块划分、目录结构

文章目录 一、需求分析1, 项目简介2, BrokerServer 核心概念3, BrokerServer 提供的核心 API4, 交换机类型5, 持久化存储6, 网络通信7, TCP 连接的复用8, 需求分析小结 二、模块划分三、目录结构 提示&#xff1a;是正在努力进步的小菜鸟一只&#xff0c;如有大佬发现文章欠佳之…

阿里云效自动构建python自动测试脚本

之前一直用的是jenkins自动构建自动化脚本&#xff0c;因为现在的公司统一在阿里云效的流水线上做代码的管理&#xff0c;构建&#xff0c;要求自动化测试也在上面自动构建&#xff0c;故而学习了一下。为自己做一个记录&#xff0c;也给有需要的朋友做一个参考。 1. 新建流水…

设计模式4、建造者模式 Builder

解释说明&#xff1a;将一个复杂对象的构建与它的表示分离&#xff0c;使得同样的构建过程可以创建不同的表示 UML 结构图&#xff1a; 抽象建造者&#xff08;Builder&#xff09;&#xff1a;这个接口规定要实现复杂对象的那些部分的创建&#xff0c;并不设计具体部件对象的创…

在MySQL中使用VARCHAR字段进行日期筛选

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

ROS2 从头开始​​:第6部分 - ROS2 中的 DDS,用于可靠的机器人通信

一、说明 在这篇文章中,我们将重点关注 ROS 2的通信栈DDS,其中这是介于管理节点通信与控制节点通信环节,是上位机决策体系与下位机的控制体系实现指令-执行-反馈的关键实现机制。 二、ROS工程的概念框架 现代机器人系统非常复杂,因为需要集成各种类型的传感器、执行器和其…

No148.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

MySQL到TiDB:Hive Metastore横向扩展之路

作者&#xff1a;vivo 互联网大数据团队 - Wang Zhiwen 本文介绍了vivo在大数据元数据服务横向扩展道路上的探索历程&#xff0c;由实际面临的问题出发&#xff0c;对当前主流的横向扩展方案进行了调研及对比测试&#xff0c;通过多方面对比数据择优选择TiDB方案。其次分享了整…

查看react内置webpack版本的方法

yarn list --pattern webpack npm ls --pattern webpack

Python3操作SQLite3创建表主键自增长|CRUD基本操作

Win11查看安装的Python路径及安装的库 Python PEP8 代码规范常见问题及解决方案 Python3操作MySQL8.XX创建表|CRUD基本操作 Python3操作SQLite3创建表主键自增长|CRUD基本操作 anaconda3最新版安装|使用详情|Error: Please select a valid Python interpreter Python函数绘…

Docker版部署RocketMQ开启ACL验证

一、拉取镜像 docker pull apache/rocketmq:latest 二、准备挂载目录 mkdir /usr/local/rocketmq/data mkdir /usr/local/rocketmq/conf 三、运行 docker run \ -d \ -p 9876:9876 \ -v /usr/local/rocketmq/data/logs:/home/rocketmq/logs \ -v /usr/local/rocketmq/data…

十五.镜头知识之景深(Depth of Field)

十五.镜头知识之景深(Depth of Field) 文章目录 十五.镜头知识之景深(Depth of Field)15.1 概述15.2 景深(depth of field)定义15.3 景深原理15.3.1 弥散圆(circle of confusion) 15.4 景深总结 15.1 概述 先看两个例子&#xff0c;拍摄花、昆虫等照片时&#xff0c;背景拍的比…

【C++】vector的介绍 | 常见接口的使用

目录 vector的介绍 常见接口 构造函数 尾插push_back() vector的遍历 1.用方括号下标 遍历&#xff1a; 2.调用at()来访问&#xff1a; 3.用迭代器遍历&#xff1a; 4.范围for遍历&#xff1a; vector空间 vector增删查改 覆盖assign() 查找find() 插入insert() …

【加载数据--自定义自己的Dataset类】

【加载数据自定义自己的Dataset类】 1 加载数据2 数据转换3 自定义Dataset类4 划分训练集和测试集5 提取一批次数据并绘制样例图 假设有四种天气图片数据全部存放与一个文件夹中&#xff0c;如下图所示&#xff1a; ├─dataset2 │ cloudy1.jpg │ cloudy10.jpg │ …

物联网、工业大数据平台 TDengine 与苍穹地理信息平台完成兼容互认证

当前&#xff0c;在政府、军事、城市规划、自然资源管理等领域&#xff0c;企业对地理信息的需求迅速增加&#xff0c;人们需要更有效地管理和分析地理数据&#xff0c;以进行决策和规划。在此背景下&#xff0c;“GIS 基础平台”应运而生&#xff0c;它通常指的是一个地理信息…

FL Studio21.1电脑试用体验版音乐制作软件

我一直以来对音乐艺术都很感兴趣。最近我接触到了一款名为 FL Studio 的电脑版音乐制作软件&#xff0c;深感其强大功能和广泛适用性。通过使用这款软件&#xff0c;我不仅深入了解了音乐制作的过程与技巧&#xff0c;也加深了对音乐创作的理解。 FL Studio 最初是一款针对 MI…

四川玖璨电子商务有限公司抖音培训引领电商新潮

近年来&#xff0c;随着电子商务的迅猛发展&#xff0c;抖音这个社交媒体平台也逐渐成为了商家必争之地。四川玖璨电子商务有限公司抖音培训&#xff0c;为你解锁电商流量密码&#xff0c;助你一飞冲天&#xff01; 一、抖音电商&#xff1a;下一个电商蓝海 作为拥有海量用户的…