计算机竞赛 深度学习OCR中文识别 - opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 文本区域检测网络-CTPN
  • 4 文本识别网络-CRNN
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习OCR中文识别系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

在日常生产生活中有大量的文档资料以图片、PDF的方式留存,随着时间推移 往往难以检索和归类 ,文字识别(Optical Character
Recognition,OCR )是将图片、文档影像上的文字内容快速识别成为可编辑的文本的技术。

高性能文档OCR识别系统是基于深度学习技术,综合运用Tensorflow、CNN、Caffe
等多种深度学习训练框架,基于千万级大规模文字样本集训练完成的OCR引擎,与传统的模式识别的技术相比,深度学习技术支持更低质量的分辨率、抗干扰能力更强、适用的场景更复杂,文字的识别率更高。

本项目基于Tensorflow、keras/pytorch实现对自然场景的文字检测及OCR中文文字识别。

2 实现效果

公式检测
在这里插入图片描述
纯文字识别

在这里插入图片描述

3 文本区域检测网络-CTPN

对于复杂场景的文字识别,首先要定位文字的位置,即文字检测。

简介
CTPN是在ECCV
2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图1,是目前比较好的文字检测算法。由于CTPN是从Faster
RCNN改进而来,本文默认读者熟悉CNN原理和Faster RCNN网络结构。
在这里插入图片描述
相关代码

def main(argv):pycaffe_dir = os.path.dirname(__file__)parser = argparse.ArgumentParser()# Required arguments: input and output.parser.add_argument("input_file",help="Input txt/csv filename. If .txt, must be list of filenames.\If .csv, must be comma-separated file with header\'filename, xmin, ymin, xmax, ymax'")parser.add_argument("output_file",help="Output h5/csv filename. Format depends on extension.")# Optional arguments.parser.add_argument("--model_def",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"),help="Model definition file.")parser.add_argument("--pretrained_model",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),help="Trained model weights file.")parser.add_argument("--crop_mode",default="selective_search",choices=CROP_MODES,help="How to generate windows for detection.")parser.add_argument("--gpu",action='store_true',help="Switch for gpu computation.")parser.add_argument("--mean_file",default=os.path.join(pycaffe_dir,'caffe/imagenet/ilsvrc_2012_mean.npy'),help="Data set image mean of H x W x K dimensions (numpy array). " +"Set to '' for no mean subtraction.")parser.add_argument("--input_scale",type=float,help="Multiply input features by this scale to finish preprocessing.")parser.add_argument("--raw_scale",type=float,default=255.0,help="Multiply raw input by this scale before preprocessing.")parser.add_argument("--channel_swap",default='2,1,0',help="Order to permute input channels. The default converts " +"RGB -> BGR since BGR is the Caffe default by way of OpenCV.")parser.add_argument("--context_pad",type=int,default='16',help="Amount of surrounding context to collect in input window.")args = parser.parse_args()mean, channel_swap = None, Noneif args.mean_file:mean = np.load(args.mean_file)if mean.shape[1:] != (1, 1):mean = mean.mean(1).mean(1)if args.channel_swap:channel_swap = [int(s) for s in args.channel_swap.split(',')]if args.gpu:caffe.set_mode_gpu()print("GPU mode")else:caffe.set_mode_cpu()print("CPU mode")# Make detector.detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,input_scale=args.input_scale, raw_scale=args.raw_scale,channel_swap=channel_swap,context_pad=args.context_pad)# Load input.t = time.time()print("Loading input...")if args.input_file.lower().endswith('txt'):with open(args.input_file) as f:inputs = [_.strip() for _ in f.readlines()]elif args.input_file.lower().endswith('csv'):inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})inputs.set_index('filename', inplace=True)else:raise Exception("Unknown input file type: not in txt or csv.")# Detect.if args.crop_mode == 'list':# Unpack sequence of (image filename, windows).images_windows = [(ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)for ix in inputs.index.unique()]detections = detector.detect_windows(images_windows)else:detections = detector.detect_selective_search(inputs)print("Processed {} windows in {:.3f} s.".format(len(detections),time.time() - t))# Collect into dataframe with labeled fields.df = pd.DataFrame(detections)df.set_index('filename', inplace=True)df[COORD_COLS] = pd.DataFrame(data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)del(df['window'])# Save results.t = time.time()if args.output_file.lower().endswith('csv'):# csv# Enumerate the class probabilities.class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]df[class_cols] = pd.DataFrame(data=np.vstack(df['feat']), index=df.index, columns=class_cols)df.to_csv(args.output_file, cols=COORD_COLS + class_cols)else:# h5df.to_hdf(args.output_file, 'df', mode='w')print("Saved to {} in {:.3f} s.".format(args.output_file,time.time() - t))

CTPN网络结构
在这里插入图片描述

4 文本识别网络-CRNN

CRNN 介绍
CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用

图来自文章:一文读懂CRNN+CTC文字识别

整个CRNN网络结构包含三部分,从下到上依次为:

  1. CNN(卷积层),使用深度CNN,对输入图像提取特征,得到特征图;
  2. RNN(循环层),使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
  3. CTC loss(转录层),使用 CTC 损失,把从循环层获取的一系列标签分布转换成最终的标签序列。

CNN
卷积层的结构图:
在这里插入图片描述

这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以 2^4
),而宽度则只减半了两次(除以2^2),这是因为文本图像多数都是高较小而宽较长,所以其feature
map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。

CRNN 还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。

输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过 CNN
后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height,
width)=(1, 32, 160)。

CNN的输出尺寸为 (512, 1, 40)。即 CNN 最后得到512个特征图,每个特征图的高度为1,宽度为40。

Map-to-Sequence
我们是不能直接把 CNN 得到的特征图送入 RNN 进行训练的,需要进行一些调整,根据特征图提取 RNN 需要的特征向量序列。

在这里插入图片描述

现在需要从 CNN 模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第
i 个特征向量是所有的特征图第 i 列像素的连接,这些特征向量就构成一个序列。

由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。

如下图所示:
在这里插入图片描述

这些特征向量序列就作为循环层的输入,每个特征向量作为 RNN 在一个时间步(time step)的输入。

RNN
因为 RNN 有梯度消失的问题,不能获取更多上下文信息,所以 CRNN 中使用的是 LSTM,LSTM
的特殊设计允许它捕获长距离依赖,不了解的话可以看一下这篇文章 对RNN和LSTM的理解。

LSTM
是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。

这里采用的是两层各256单元的双向 LSTM 网络:
在这里插入图片描述

通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在 LSTM 中一个时间步就传入一个特征向量进行分

我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN
的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。

因为每个时间步都会有一个输入特征向量 x^T ,输出一个所有字符的概率分布 y^T ,所以输出为 40 个长度为字符类别数的向量构成的后验概率矩阵。

如下图所示:
在这里插入图片描述

然后将这个后验概率矩阵传入转录层。
CTC loss
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN
对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。

端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal
Classification, CTC)的损失函数来对 CNN 和 RNN 进行端到端的联合训练。

相关代码

    def inference(self, inputdata, name, reuse=False):"""Main routine to construct the network:param inputdata::param name::param reuse::return:"""with tf.variable_scope(name_or_scope=name, reuse=reuse):# centerlized datainputdata = tf.divide(inputdata, 255.0)#1.特征提取阶段# first apply the cnn feature extraction stagecnn_out = self._feature_sequence_extraction(inputdata=inputdata, name='feature_extraction_module')#2.第二步,  batch*1*25*512  变成 batch * 25 * 512# second apply the map to sequence stagesequence = self._map_to_sequence(inputdata=cnn_out, name='map_to_sequence_module')#第三步,应用序列标签阶段# third apply the sequence label stage# net_out width, batch, n_classes# raw_pred   width, batch, 1net_out, raw_pred = self._sequence_label(inputdata=sequence, name='sequence_rnn_module')return net_out

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/90192.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

外汇天眼:外汇交易一周最佳外汇交易日!

外汇市场运行24小时,但并非每时每刻都适合交易。本文将为您介绍一周中最佳外汇交易日,以及哪些时间段最适合参与外汇交易。 首先,值得注意的是伦敦时段通常是外汇市场最繁忙的时段。然而,即便如此,一周中仍有特定的日…

c语言 - 实现每隔1秒向文件中写入当前系统时间

实现思路 主要是通过库函数和结构体获取当前系统时间(年月日和时分秒)保存到变量里,然后通过格式化输出函数将当前系统时间输出到文件中去。 但是需要注意的是题目要求每隔 1 s对系统时间进行输出,所以需要加入 sleep()函数进行调…

二、浏览器--事件循环(也叫事件环,也叫event loop)--任务队列(等待执行的任务(存放的定时器,http,事件等进程))--渲染三者的关系

引用B站视频,搜索标题:【事件循环】【前端】事件原理讲解,超级硬核,忍不住转载 本视频总结: 超级复杂的JS底层。事件循环和事件队列的关系。宏任务、微任务和raf回调这3个事件队列的关系。任务队列和执行栈的关系。d…

配置OSPFv3基本功能 华为笔记

1.1 实验介绍 1.1.1 关于本实验 OSPF协议是为IP协议提供路由功能的路由协议。OSPFv2(OSPF版本2)是支持IPv4的路由协议,为了让OSPF协议支持IPv6,技术人员开发了OSPFv3(OSPF版本3)。 无论是OSPFv2还是OSPFv…

设计模式2、抽象工厂模式 Abstract Factory

解释说明:提供一个创建一系列相关或相互依赖对象的接口,而无需指定他们具体的类。 简言之,一个工厂可以提供创建多种相关产品的接口,而无需像工厂方法一样,为每一个产品都提供一个具体工厂 抽象工厂(Abstra…

学校安全用电管理系统解决方案

随着科技的发展和进步,电力已成为我们日常生活和学习的重要支柱。然而,电力的使用也带来了一定的安全风险。特别是对于学校这个复杂而又活跃的环境,安全用电管理系统的角色显得尤为重要。 一、学校用电管理系统的现状 目前&#xff0…

win10默认浏览器改不了怎么办,解决方法详解

win10默认浏览器改不了怎么办,解决方法详解_蓝天网络 在使用Windows 10操作系统时,你可能会遇到无法更改默认浏览器的情况。这可能是因为其他程序或设置正在干扰更改。如果你也遇到了这个问题,不要担心,本文将为你提供详细的解决…

CSS基础

目录 一.CSS介绍 三种CSS的写法 1.内部样式 2.内联样式 3.外部表示 二.CSS选择器 1.标签选择器 2.类选择器 ​编辑 3.ID选择器 ​编辑 4.后代选择器 ​编辑 5.子选择器 6.并集选择器 7.伪类选择器 三.CSS常用属性值 1.字体设置 2.文本属性 1.文字颜色 2.文…

华为云云耀云服务器L实例评测 | 实例使用教学之简单使用:通过命令行管理华为云云耀云服务器

华为云云耀云服务器L实例评测 | 实例使用教学之简单使用:通过命令行管理华为云云耀云服务器 介绍华为云云耀云服务器 华为云云耀云服务器 (目前已经全新升级为 华为云云耀云服务器L实例) 华为云云耀云服务器是什么华为云云耀云服务…

深入理解传输层协议:TCP与UDP的比较与应用

目录 前言什么是TCP/UDPTCP/UDP应用TCP和UDP的对比总结 前言 传输层是TCP/IP协议栈中的第四层,它为应用程序提供服务,定义了主机应用程序之间端到端的连通性。在本文章,我们将深入探讨传输层协议,特别是TCP和UDP协议的原理和区别…

在 .NET 8 Release Candidate 1 中推出 .NET MAUI:质量

作者:David Ortinau 排版:Alan Wang 今天,我们很高兴地宣布 .NET MAUI 在 .NET 8 Release Candidate 1 中已经可用,该版本带有适用于生产应用程序的正式许可证,因此您可以放心地将此版本用于生产环境。我们在 .NET 8 中…

IDEA 2019 Springboot 3.1.3 运行异常

项目场景&#xff1a; 在IDEA 2019 中集成Springboot 3.1.3 框架&#xff0c;运行异常。 <?xml version"1.0" encoding"UTF-8"?><project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSch…

C++之传指针、引用、vector<shared_ptr<string>>应用总结(二百三十三)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

Spring面试题13:Spring中ApplicationContext实现有哪些?Bean工厂和Applicationcontext有什么区别

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:Spring中ApplicationContext实现有哪些? 在Spring框架中,有以下几种ApplicationContext的实现: ClassPathXmlApplicationContext:从类路径下的…

算法通过村第十关-并归|黄金笔记|手撕并归排序

文章目录 前言并归排序的原理总结 前言 提示&#xff1a;有时我会担心你们发现我其实很普通。爱并不需要你与众不同。--查理麦克西《男孩、鼹鼠、狐狸和马》 并归排序算是经典的分治思想中的问题&#xff0c;这个非常典型的题目。 并归排序的原理 并归排序&#xff0c;简单来说…

Shiro高级及SaaS-HRM的认证授权

Shiro在SpringBoot工程的应用 Apache Shiro是一个功能强大、灵活的&#xff0c;开源的安全框架。它可以干净利落地处理身份验证、授权、企业会话管理和加密。越来越多的企业使用Shiro作为项目的安全框架&#xff0c;保证项目的平稳运行。 在之前的讲解中只是单独的使用shiro&…

成为吃鸡战场的王者!分享顶级战术干货,助您提高战斗力!

各位吃鸡战场的玩家们&#xff0c;欢迎来到本视频&#xff01;在这里&#xff0c;我将为您呈现一些与众不同的吃鸡干货&#xff0c;帮助您提高战斗力、轻松吃鸡&#xff01; 首先&#xff0c;让我们谈一谈作图工具推荐。绝地求生作图工具是吃鸡玩家们的必备利器。我将给大家推荐…

TikTok的伦理挑战:虚拟世界与现实世界的交汇

在数字时代&#xff0c;社交媒体平台已经不再只是一个信息传播的工具&#xff0c;它已经深刻地改变了我们的社交行为、价值观和伦理观。 而在这一领域的佼佼者之一&#xff0c;TikTok&#xff0c;正面临着伦理挑战&#xff0c;这是虚拟世界与现实世界交汇的产物。 本文将深入…

CompletableFuture-线程池运行选择

如果没有传入自定义线程池&#xff0c;都用默认线程池ForkJoinPool 传入一个线程池&#xff0c;如果你执行第一个任务时&#xff0c;传入了一个自定义线程池&#xff0c; 调用thenRun方法执行第二个任务时&#xff0c;则第二个任务和第一个任务时共用同一个线程池 调用thenRun…

Linux和本地Windows如何互传文件(sz和rz指令)

目录 关于 rzsz 注意事项 安装软件 rz的使用&#xff08;本地主机文件传到Windows中&#xff09; sz的使用(Linux中的文件传到本地Windows主机中) 关于 rzsz 这个工具用于 windows 机器和远端的 Linux 机器通过 XShell 传输文件. 安装完毕之后可以通过直接拖拽的方式将文件…