【深度学习神经网络学习笔记(三)】向量化编程

向量化编程

    • 向量化编程
    • 前言
    • 1、向量化编程
    • 2、向量化优势
    • 3、正向传播和反向传播

向量化编程

前言

向量化编程是一种利用专门的指令集或并行算法来提高数据处理效率的技术,尤其在科学计算、数据分析和机器学习领域中非常常见。它允许通过一次操作处理整个数组或矩阵的数据,而不是通过循环逐个处理每个元素。这种方法不仅简化了代码,而且能够显著提高程序运行速度,因为它更有效地利用了现代 CPU 的并行计算能力。

备注:本系列文章基于B站课程: 122集付费!CNN、RNN、GAN、GNN、DQN、Transformer、LSTM等八大深度学习神经网络一口气全部学完!学习整理得到。

1、向量化编程

没更新一次梯度时候,在训练期间我们会拥有 m 个样本,那么这样每个样本提供进去都可以做一个梯度计算。所以我们要去做所有样本上的计算结果、梯度等操作。
在这里插入图片描述

2、向量化优势

由于在进行计算的时候,最好不要使用 for 循环去进行计算,使用 Numpy 可以进行更加快速的向量化计算。
在这里插入图片描述
例如:

  • 使用 for 循环

    import numpy as np
    import timea = np.random.rand(100000)
    b = np.random.rand(100000)
    # 第一种 for 循环
    c = 0
    start = time.time()
    for i in range(100000):c += a[i] * b[i]
    end = time.time()
    print(c)
    print("计算耗时:%s" % str((end - start) * 1000) + 'ms')
  • 使用 np.dot

    import numpy as np
    import timea = np.random.rand(100000)
    b = np.random.rand(100000)
    d = a * b
    # 向量化运算 np.dot()
    start1 = time.time()
    c1 = np.dot(a, b)
    end1 = time.time()
    print(c1)
    print("计算耗时:%s" % str((end1 - start1) * 1000) + 'ms')
    

运行结果如下:
在这里插入图片描述
可以看到 Numpy 能够充分的利用并行化。

Numpy 中提供了很多函数使用

函数作用
np.ones or np,zeros全为1或者0的矩阵
np.exp指数计算
np.log对数计算
np.abs绝对值计算

所以上述的 m 个样本的梯度更新过程,就是去除掉 for 循环

3、正向传播和反向传播

前面我们所做的整个过程分为两个部分,一个是从前往后的计算出梯度和损失,另一部分是从后往前计算参数的更新梯度值。所以在神经网络中经常会出现这两个概念。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/896316.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

海康威视摄像头RTSP使用nginx推流到服务器直播教程

思路: 之前2020年在本科的时候,由于项目的需求需要将海康威视的摄像头使用推流服务器到网页进行直播。这里将自己半个月琢磨出来的步骤给大家发一些。切勿转载!!!! 使用网络摄像头中的rtsp协议---------通…

鸿蒙开发深入浅出03(封装通用LazyForEach实现懒加载)

鸿蒙开发深入浅出03(封装通用LazyForEach实现懒加载) 1、效果展示2、ets/models/BasicDataSource.ets3、ets/models/HomeData.ets4、ets/api/home.ets5、ets/pages/Home.ets6、ets/views/Home/SwiperLayout.ets7、后端代码 1、效果展示 2、ets/models/Ba…

【Rust中级教程】2.8. API设计原则之灵活性(flexible) Pt.4:显式析构函数的问题及3种解决方案

喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 说句题外话,这篇文章一共5721个字,是我截至目前写的最长的一篇文章&a…

一周学会Flask3 Python Web开发-Jinja2模板过滤器使用

锋哥原创的Flask3 Python Web开发 Flask3视频教程: 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili 在Jinja2中,过滤器(filter)是一些可以用来修改和过滤变量值的特殊函数,过滤器和变量用一个竖线 | &a…

数据库 安装initializing database不通过

出现一下情况时: 处理方法: 将自己的电脑名称 中文改成英文 即可通过

嵌入式开发:傅里叶变换(5):STM32和Matlab联调验证FFT

目录 1. MATLAB获取 STM32 的原始数据 2. 将数据上传到电脑 3. MATLAB 接收数据并验证 STM32进行傅里叶代码 结果分析 STM32 和 MATLAB 联调是嵌入式开发中常见的工作流程,通常目的是将 STM32 采集的数据或控制信号传输到 MATLAB 中进行实时处理、分析和可视化…

Mobaxterm服务器常用命令(持续更新)

切换文件夹 cd path # for example, cd /gpu03/deeplearning/进入不同GPU ssh mgmt ssh gpu01 ssh gpu03寻找文件位置 find /path -name file_name #for example, find / -name lib #在根目录下搜寻名为lib文件 #for example, find /home/deeplearning -name "lib"…

MFC文件和注册表的操作

MFC文件和注册表的操作 日志、操作配置文件、ini、注册表、音视频的文件存储 Linux下一切皆文件 C/C操作文件 const char* 与 char* const const char* 常量指针,表示指向的内容为常量。指针可以指向其他变量,但是内容不能再变了 char szName[6]&qu…

微信小程序源码逆向 MacOS

前言 日常工作中经常会遇到对小程序的渗透测试,微信小程序的源码是保存在用户客户端本地,在渗透的过程中我们需要提取小程序的源码进行问题分析,本篇介绍如何在苹果电脑 MacOS 系统上提取微信小程序的源码。 0x01 微信小程序提取 在苹果电…

ubuntu-24.04.1-desktop 中安装 QT6.7

ubuntu-24.04.1-desktop 中安装 QT6.7 1 环境准备1.1 安装 GCC 和必要的开发包:1.2 Xshell 连接 Ubuntu2 安装 Qt 和 Qt Creator:2.1 下载在线安装器2.2 在虚拟机中为文件添加可执行权限2.3 配置镜像地址运行安装器2.4 错误:libxcb-xinerama.so.0: cannot open shared objec…

告别 Freetype,拥抱高效字体处理新方案 - 纯c#解析字体库

在当今数字化的时代,字体处理在众多领域中都扮演着至关重要的角色,无论是平面设计、网页开发,还是移动应用、游戏制作,合适的字体选择与精准的处理都能极大地提升用户体验。而在字体处理的技术领域,Freetype 库一直是开…

React + TypeScript 复杂布局开发实战

React TypeScript 复杂布局开发实战 一、项目架构设计(基于最新技术栈) 1.1 技术选型与工程创建 # 使用Vite 5.x React 19 TypeScript 5.4 npx create-vitelatest power-designer-ui --template react-ts cd power-designer-ui && npm inst…

从最小依赖角度谈静态库与动态库的选择及配置策略

文章目录 1. 前言2. 静态库与动态库:依赖最小化的抉择2.1 静态库概述2.2 动态库概述2.3 依赖最小化角度的选择建议 3. 运行时库配置策略:/MT 与 /MD 的取舍3.1 /MT 与 /MD 的优劣比较3.2 配置选择的建议 4. 实际案例与配置示例4.1 静态库示例&#xff08…

深度学习pytorch之19种优化算法(optimizer)解析

提示:有谬误请指正 摘要 本博客详细介绍了多种常见的深度学习优化算法,包括经典的LBFGS 、Rprop 、Adagrad、RMSprop 、Adadelta 、ASGD 、Adamax、Adam、AdamW、NAdam、RAdam以及SparseAdam等,通过对这些算法的公式和参数说明进行详细解析…

【深度学习神经网络学习笔记(二)】神经网络基础

神经网络基础 神经网络基础前言1、Logistic 回归2、逻辑回归损失函数3、梯度下降算法4、导数5、导数计算图6、链式法则7、逻辑回归的梯度下降 神经网络基础 前言 Logistic 回归是一种广泛应用于统计学和机器学习领域的广义线性回归模型,主要用于解决二分类问题。尽…

002简单MaterialApp主题和Scaffold脚手架

002最简单的MaterialApp主题和Scaffold脚手架使用导航栏_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1RZ421p7BL?spm_id_from333.788.videopod.episodes&vd_source68aea1c1d33b45ca3285a52d4ef7365f&p1501.MaterialApp纯净的 /*MaterialApp 是主题,自带方向设…

DeepSeek开源周Day1:FlashMLA引爆AI推理性能革命!

项目地址:GitHub - deepseek-ai/FlashMLA 开源日历:2025-02-24起 每日9AM(北京时间)更新,持续五天! ​ 一、开源周震撼启幕 继上周预告后,DeepSeek于北京时间今晨9点准时开源「FlashMLA」,打响开源周五连…

17.C++类型转换

1. C语言中的类型转换 在C语言中,如果赋值运算符左右两侧类型不同,或者形参与实参类型不匹配,或者返回值类型与接收返回值类型不一致时,就需要发生类型转换,C语言中共有两种形式的类型转换:隐式类型转换和显…

springboot志同道合交友网站设计与实现(代码+数据库+LW)

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本志同道合交友网站就是在这样的大环境下诞生,其可以帮助使用者在短时间内处理完毕庞大的数据信…

VMware中的linux常用指令

常用 Linux 基础命令 文件与目录操作 ls:查看当前目录的文件和子目录,ls -a显示所有文件,包括隐藏文件。cd:切换目录,如 **cd ~** 切换到个人家目录。pwd:查看当前目录。mkdir:创建文件夹&#…