第一阶段:基础理论入门
目标:了解大模型的基本概念和背景。
内容:
人工智能演进与大模型兴起。
大模型定义及通用人工智能定义。
GPT模型的发展历程。
第二阶段:核心技术解析
目标:深入学习大模型的关键技术和工作原理。
内容:
算法的创新、计算能力的提升。
数据的可用性与规模性、软件与工具的进步。
生成式模型与大语言模型。
Transformer架构解析。
预训练、SFT、RLHF。
第三阶段:编程基础与工具使用
目标:掌握大模型开发所需的编程基础和工具。
内容:
Python编程基础。
Python常用库和工具。
提示工程基础。
第四阶段:实战项目与案例分析
目标:通过实战项目深化理论知识和提升应用能力。
内容:
实战项目一:基于提示工程的代码生成。
实战项目二:基于大模型的文档智能助手。
实战项目三:基于大模型的医学命名实体识别系统。
案例分析:针对每个实战项目进行详细的分析和讨论。
第五阶段:高级应用开发
目标:掌握大模型的高级应用开发技能。
内容:
大模型API应用开发。
RAG (Retrieval-Augmented Generation)。
向量检索与向量数据库。
LangChain、Agents、AutoGPT。
第六阶段:模型微调与私有化部署
目标:学习如何对大模型进行微调并私有化部署。
内容:
私有化部署的必要性。
HuggingFace开源社区的使用。
模型微调的意义和常见技术。
第七阶段:前沿技术探索
目标:探索大模型领域的前沿技术和未来趋势。
内容:
多模态模型。
参数高效微调技术。
深度学习框架比较。
大模型评估和benchmarking。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓