Day34
62.不同路径
思路
第一种:深搜 -> 超时
第二种:动态规划
第三种:数论
动态规划代码如下:
class Solution { public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m; i++) dp[i][0] = 1;for (int j = 0; j < n; j++) dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];} };
五部曲
1.dp数组及下标定义:二维dp数组dp[i][j]表示从(0,0)出发,到(i,j)有dp[i][j]条不同的路径
2.递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1],即当前格子的值等于上面的格子和左边的格子的值的总和
3.初始化:将第一行和第一列初始为1
4.遍历顺序:从左到右一层一层往下遍历
5.数组的数据应该是怎样的:
63. 不同路径 II
思路
有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。
class Solution { public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m = obstacleGrid.size();int n = obstacleGrid[0].size();if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0return 0;vector<vector<int>> dp(m, vector<int>(n, 0));for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {if (obstacleGrid[i][j] == 1) continue;dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];} };
五部曲
和上一题是一样的