学习数据结构(1)时间复杂度

1.数据结构和算法

(1)数据结构是计算机存储、组织数据的方式,指相互之间存在⼀种或多种特定关系的数据元素的集合

(2)算法就是定义良好的计算过程,取一个或一组的值为输入,并产生出一个或一组值作为输出,简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果

(3)算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量⼀个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。时间复杂度主要衡量⼀个算法的运行快慢,而空间复杂度主要衡量⼀个算法运行所需要的额外空间

2.时间复杂度

(1)概念

在计算机科学中,算法的时间复杂度是⼀个函数式T(N),它定量描述了该算法的运行时间。时间复杂度是衡量程序的时间效率

为什么不去计算程序的运行时间?

·程序运行时间与编译环境、运行机器的配置有关,同一个算法程序,用一个老编译器进行编译和用新编译器编译,在同样机器下运行时间不同

·同⼀个算法程序,用⼀个老低配置机器和新高配置机器,运行时间也不同

·运行时间只能程序写好后测试,不能在程序写前通过理论思想计算评估

计算时间复杂度计算的不是程序的精确执行次数,(精确执行次数计算起来很复杂),计算时间复杂度只是想比较算法程序的增长量级,也就是当N不断变大时T(N)的差别,只需要计算程序能代表增长量级的大概执行次数,复杂度的表示通常使用大O的渐进表示法

(2)大O的渐进表示法

大O符号:是用于描述函数渐进行为的数学符号

规则:

·时间复杂度函数式T(N)中,只保留最高阶项,去掉低阶项,因为当N不断变大时,低阶项对结果影响越来越小,当N无穷大时,就可以忽略不计了

·如果最高阶项存在且不是1,则去除这个项目的常数系数,因为当N不断变大,这个系数对结果影响越来越小,当N无穷大时,就可以忽略不计了

·T(N)中如果没有N相关的项目,只有常数项,则用常数1取代常数

(3)实例

例1:计算Fucn1的时间复杂度

T(N)=N^2+2*N+10,只保留最高次项,则时间复杂度为O(N)

例2:计算Fucn2的时间复杂度

T(N)=2N+10,只保留最高次项,系数改为1,则时间复杂度为O(N)

例3:计算Fucn3的时间复杂度

T(N)=M+N,若M和N相差不大,T(N)可看成2N或2M,若M>>N,T(N)=M,若M<<N,T(N)=N,故时间复杂度为O(N)

例4:计算Fucn4的时间复杂度

T(N)=100,只有常数项,用1代替常数,则时间复杂度为O(1)

例5:计算Fucn5的时间复杂度

若要查找的字符在字符串第一个位置,T(N)=1,若要查找的字符在字符串最后一个位置,T(N)=N,若要查找的字符在字符串中间位置,T(N)=N/2或N/2+1(N是偶数),或T(N)=(N+1)/2(N是奇数),因此,Fucn5的时间复杂度分为:最好情况:O(1),最坏情况:O(N),平均情况:O(N)

补充:

有些算法的时间复杂度存在最好、平均和最坏情况

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

大O的渐进表示法在实际中一般情况关注的是算法的上界,也就是最坏运行情况

故例5的时间复杂度取O(N)

例6:计算BubbleSort的时间复杂度

若数组有序,则T(N)=N,若数组有序且为降序,则:T (N) = N(N-1)/2,故BubbleSort的时间复杂度取最差情况为O(N^2)

例7:计算Func6的时间复杂度

当n=2时,执行次数为1,当n=4时,执行次数为2,当n=16时,执行次数为4,假设执行次数为x ,则2^x= n, 因此执行次数:x = log (2) n,故Func6的时间复杂度为O(log (2) n),当n接近无穷大时,底数的大小对结果影响不大,因此,一般情况下不管底数是多少都可以省略不写,即可以表示为log n,建议使用log n

例8:计算Fac的时间复杂度

递归算法的时间复杂度=单次递归的时间复杂度*递归次数

单次递归的时间复杂度为O(1),递归次数为N,故Fac的时间复杂度为O(N)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/893916.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据库表数据导出攻略:SQL脚本生成全解析

摘要 为了将SQL Server中的特定数据库表及其数据导出为SQL脚本&#xff0c;用户可以遵循一系列明确的步骤。首先&#xff0c;在SQL Server Management Studio中启动目标数据库&#xff0c;并通过右键菜单选择“任务”下的“生成脚本”。在向导中逐步操作&#xff0c;选择需要导…

基于RIP的MGRE实验

实验拓扑 实验要求 按照图示配置IP地址配置静态路由协议&#xff0c;搞通公网配置MGRE VPNNHRP的配置配置RIP路由协议来传递两端私网路由测试全网通 实验配置 1、配置IP地址 [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ip add 15.0.0.1 24 [R1]int LoopBack 0 [R1-LoopBack0]i…

获取加工视图下所有元素

UF_SETUP_ask_program_root //程序顺序 视图 UF_SETUP_ask_mct_root //机床视图 UF_SETUP_ask_mthd_root //加工方法视图 UF_SETUP_ask_geom_root //几何视图 UF_initialize();//初始化 UF_UI_ONT_refresh();//刷新加工导航器 UF_UI_open_listing_window(); tag_t …

C#实现SQL Server数据血缘关系生成程序

要在现有的C#程序中添加功能&#xff0c;输出SQL Server数据血缘关系的三张表到Excel文件&#xff0c;我们需要进行以下几个步骤&#xff1a; 分析存储过程、视图和函数中的引用关系&#xff0c;构建数据血缘关系。 按依赖性从小到大排序表的顺序。 找出对应生成表的数据的存储…

Oracle迁移DM数据库

Oracle迁移DM数据库 本文记录使用达梦官方数据迁移工具DTS&#xff0c;将Oracle数据库的数据迁移至达梦数据库。 1 数据准备 2 DTS工具操作步骤 2.1 创建工程 打开DTS迁移工具&#xff0c;点击新建工程&#xff0c;填写好工程信息&#xff0c;如图&#xff1a; 2.2 新建迁…

微服务(一)

文章目录 项目地址一、微服务1.1 分析User的Domian Verb和Nouns 二、运行docker和k8s2.1 Docker1. 编写dockerfile2. 创建docker image3. 运行docker使用指定端口4. 查看当前运行的镜像5. 停止当前所有运行的docker6. 删除不用的docker images7. 将本地的image上传到hub里 2.2 …

现代操作系统一点点

现代操作系统 操作系统为所有其他软件提供基础的运行环境。 操作系统包含很多用于控制输入/输出设备的驱动 文件也是抽象出来的 操作系统的一个主要任务是隐藏硬件&#xff0c;呈现给程序&#xff08;以及程序员&#xff09;良好、清晰、优雅、一致的抽象。 shell也是操作系统提…

分享|instructionfine-tuning 指令微调是提高LLM性能和泛化能力的通用方法

《生成式AI导论》课程中&#xff0c;李宏毅老师提到一篇关于“ instruction fine-tuning” 指令微调的论文&#xff1a; 《Scaling Instruction-Finetuned Language Models》 摘要分享&#xff1a; 事实证明&#xff0c; 在一组以指令形式表达的数据集上微调语言模型可以提…

python生成图片和pdf,快速

1、下载安装 pip install imgkit pip install pdfkit2、wkhtmltopdf工具包&#xff0c;下载安装 下载地址&#xff1a;https://wkhtmltopdf.org/downloads.html 3、生成图片 import imgkit path_wkimg rD:\app\wkhtmltopdf\bin\wkhtmltoimage.exe # 工具路径&#xff0c;安…

菜鸟之路Day09一一集合进阶(二)

菜鸟之路Day09一一集合进阶(二) 作者&#xff1a;blue 时间&#xff1a;2025.1.27 文章目录 菜鸟之路Day09一一集合进阶(二)0.概述1.泛型1.1泛型概述1.2泛型类1.3泛型方法1.4泛型接口1.5泛型通配符 2.Set系列集合2.1遍历方式2.2HashSet2.3LinkedHashSet2.4TreeSet 0.概述 内…

Hive:基本查询语法

和oracle一致的部分 和oracle不一样的部分 排序 oracle中,在升序排序中&#xff0c;NULL 值被视为最大的值&#xff1b;在降序排序中&#xff0c;NULL 值被视为最小的值。 在MySQL中&#xff0c;NULL 被视为小于任何非空值。 在Hive中, NULL是最小的; Hive除了可以用order…

在RHEL 8.10上安装开源工业物联网解决方案Thingsboard 3.9

在RHEL/CentOS/Rocky/AlmaLinux/Oracle Linux 8单节点上安装 备注&#xff1a; 适用于单节点 是否支持欧拉&#xff1f;&#xff1f;&#xff1f; 前提条件 本指南描述了如何在RHEL/CentOS 7/8上安装ThingsBoard。硬件要求取决于所选的数据库和连接到系统的设备数量。要在单…

Python GUI 开发 | PySide6 辅助工具简介

关注这个框架的其他相关笔记&#xff1a;Python GUI 开发 | PySide6 & PyQt6 学习手册-CSDN博客 在上一章中&#xff0c;我们介绍了如何搭建 PySide6 & PyQt6 的开发环境。在搭建环境的时候我们配置了几个几个快捷工具&#xff0c;很多小伙伴可能都不知道是干啥用的。那…

hive:数据导入,数据导出,加载数据到Hive,复制表结构

hive不建议用insert,因为Hive是建立在Hadoop之上的数据仓库工具&#xff0c;主要用于批处理和大数据分析&#xff0c;而不是为OLTP&#xff08;在线事务处理&#xff09;操作设计的。INSERT操作会非常慢 数据导入 命令行界面:建一个文件 查询数据>>复制>>粘贴到新…

HarmonyOS:ForEach:循环渲染

一、前言 ForEach接口基于数组类型数据来进行循环渲染&#xff0c;需要与容器组件配合使用&#xff0c;且接口返回的组件应当是允许包含在ForEach父容器组件中的子组件。例如&#xff0c;ListItem组件要求ForEach的父容器组件必须为List组件。 API参数说明见&#xff1a;ForEa…

cc算法总结

Vegas&#xff1a;基于延迟。是一种tcp拥塞避免算法&#xff0c;强调延迟而不是丢包来作为发送速率调整的依据。诞生于1994年。 Reno&#xff1a;基于丢包。 NewReno:基于丢包。 loss-based、delay-based、hybrid-based、congestion-based、learning-based。 基于丢包类型&…

基于PostgreSQL的自然语义解析电子病历编程实践与探索(上)

一、引言 1.1研究目标与内容 本研究旨在构建一个基于 PostgreSQL 的自然语义解析电子病历编程体系,实现从电子病历文本中提取结构化信息,并将其存储于 PostgreSQL 数据库中,以支持高效的查询和分析。具体研究内容包括: 电子病历的预处理与自然语言处理:对电子病历文本进…

安装 docker 详解

在平常的开发工作中&#xff0c;我们经常需要部署项目。随着 Docker 容器的出现&#xff0c;大大提高了部署效率。Docker 容器包含了应用程序运行所需的所有依赖&#xff0c;避免了换环境运行问题。可以在短时间内创建、启动和停止容器&#xff0c;大大提高了应用的部署速度&am…

运用python爬虫爬取汽车网站图片并下载,几个汽车网站的示例参考

当然&#xff0c;以下是一些常见的汽车网站及其爬虫示例代码&#xff0c;展示如何爬取汽车图片并下载。请注意&#xff0c;爬取网站内容时应遵守网站的使用协议和法律法规&#xff0c;避免对网站造成不必要的负担。 示例1&#xff1a;爬取汽车之家图片 网站地址 汽车之家 爬…

深度学习项目--基于LSTM的糖尿病预测探究(pytorch实现)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 前言 LSTM模型一直是一个很经典的模型&#xff0c;一般用于序列数据预测&#xff0c;这个可以很好的挖掘数据上下文信息&#xff0c;本文将使用LSTM进行糖尿病…