LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测

LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测

目录

    • LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测(完整源码和数据);
2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2023b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式私信博主回复LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/890710.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux创建虚拟串口

要将一个终端bash作为串口,并使其可以被pyserial打开,你可以使用 socat 工具。socat 是一个多功能的网络工具,可以创建虚拟串口对。以下是具体步骤: 安装 socat: bash复制代码 sudo apt-get install socat 创建虚拟串…

Python基础知识回顾

数据类型 Python可以区分整数(integers、下文简写为int)、浮点数(float)、字符串(string)和布尔值(Boolean)等数据类型。 1)int是可正可负的整数 2)float包…

虚拟机桥接模式网络连接不上解决方法

可能是桥接模式自动配置网络地址的时候没配好,自己手动配置一下。先看看windows里的wifi的ip 把虚拟机的网络设置打开ipv4把地址、子网掩码、网关输进去,然后再连接

家用无线路由器的 2.4GHz 和 5GHz

家中的无线路由器 WiFi 名称有两个,一个后面带有 “5G” 的标记,这让人产生疑问:“连接带‘5G’的 WiFi 是不是速度更快?” 实际上,这里的 “5G” 并不是移动通信中的 5G 网络,而是指路由器的工作频率为 5G…

面试场景题系列:设计一致性哈希系统

为了实现横向扩展,在服务器之间高效和均匀地分配请求/数据是很重要的。一致性哈希是为了达成这个目标而被广泛使用的技术。首先,我们看一下什么是重新哈希问题。 1 重新哈希的问题 如果你有n个缓存服务器,常见的平衡负载的方法是使用如下哈希…

【视觉惯性SLAM:相机成像模型】

相机成像模型介绍 相机成像模型是计算机视觉和图像处理中的核心内容,它描述了真实三维世界如何通过相机映射到二维图像平面。相机成像模型通常包括针孔相机的基本成像原理、数学模型,以及在实际应用中如何处理相机的各种畸变现象。 一、针孔相机成像原…

物联网网络中的设备认证方法

论文标题:DEVICE AUTHENTICATION METHOD IN INTERNET OF THINGS NETWORKS(物联网网络中的设备认证方法) 作者信息: A.Ya. Davletova,West Ukrainian National University, 11, Lvivska Str. Ternopil, 46009, Ukraine…

mysql,数据库数据备份

mysql 一.数据库备份概念1.备份分类2.备份策略3.备份三要素二.完全备份操作1.物理备份(还原),冷备份2.逻辑备份,温备份三.percona软件的xtrabackup工具备份(2备份,3还原),增量,差异1.percona软件安装2.增量备份(还原)3.差异备份四.binlog日志1.binlog日志概念2.查看binlog日志信…

GitLab部署到阿里云服务器上

GitLab 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具,并在此基础上搭建起来的web服务。可通过Web界面进行访问公开的或者私人项目。它拥有与Github类似的功能,能够浏览源代码,管理缺陷和注释。 一、安装 1.创建一…

iOS + watchOS Tourism App(含源码可简单复现)

iOS-app-trip-in-HK - how to study and get the new product in 2 weeks ⚠️ 本文源码已上传到GitHub: https://github.com/boots-coder/whereWeGo during 12. 3 - 12.17 14 days ps:本人有java springboot开发和python的人工智能的基础知识背景; 但…

Linux------进程处理(system库函数)

视频&#xff1a; 【尚硅谷嵌入式Linux应用层开发&#xff0c;linux网络编程&#xff0c;linux进程线程&#xff0c;linux文件io】https://www.bilibili.com/video/BV1DJ4m1M77z?p34&vd_source342079de7c07f82982956aad8662b467 #include <stdlib.h> #include <…

【数据库原理】数据增删改查,DML、单表查询、多表连接查询

DML数据操纵语言&#xff0c;处理对象是数据本身。 DDL数据定义语言&#xff0c;处理对象是数据表的结构。 数据库中数据处理主要包括增删改查。查询属于重点部分。 假设数据库中有表&#xff1a; student(sno,sname,sex,class); #学生&#xff08;学号&#xff0c;姓名&…

JAVA HTTP压缩数据

/*** 压缩数据包** param code* param data* param resp* throws IOException*/protected void writeZipResult(int code, Object data, HttpServletResponse resp) throws IOException {resp.setHeader("Content-Encoding", "gzip");// write到客户端resp…

UDP传输层通信协议详解

引言 在计算机网络通信的广阔天地中&#xff0c;传输层协议扮演着至关重要的角色。它们负责在网络中的两个终端之间建立、管理和终止数据传输。在众多传输层协议中&#xff0c;UDP&#xff08;User Datagram Protocol&#xff0c;用户数据报协议&#xff09;以其独特的特性和应…

计算机组成原理的学习笔记(4)--数据的表示与运算·其三 补码的乘法以及原码补码的除法

学习笔记 前言 本文主要是对于b站尚硅谷的计算机组成原理的学习笔记&#xff0c;仅用于学习交流。 1.补码乘法 基本操作 与正常原码乘法差不多&#xff0c;逐位乘&#xff0c;随后相加&#xff0c;而与符号位有关的一项也叫校正项 Booth算法 从乘数的最低位开始&#xff0c…

【人工智能】使用Python构建推荐系统:从协同过滤到深度学习

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 推荐系统是现代互联网的重要组成部分,广泛应用于电商、社交媒体和流媒体平台中。本文详细介绍了如何使用Python构建推荐系统,从传统的协同…

K8s证书过期

part of the existing bootstrap client certificate is expired: 2023-11-27 12:44:12 0000 UTC 查看运行日志&#xff1a; journalctl -xefu kubelet 重新生成证书&#xff1a; #重新生成证书 kubeadm alpha certs renew all #备份旧的配置文件 mv /etc/kubernetes/*.conf…

Llama 3 模型系列解析(一)

目录 1. 引言 1.1 Llama 3 的简介 1.2 性能评估 1.3 开源计划 1.4 多模态扩展 ps 1. 缩放法则 2. 超额训练&#xff08;Over-training&#xff09; 3. 计算训练预算 4. 如何逐步估算和确定最优模型&#xff1f; 2. 概述 2.1 Llama 3 语言模型开发两个主要阶段 2.2…

BenchmarkSQL使用教程

1. TPC-C介绍 Transaction Processing Performance Council (TPC) 事务处理性能委员会&#xff0c;是一家非盈利IT组织&#xff0c;他们的目的是定义数据库基准并且向产业界推广可验证的数据库性能测试。而TPC-C最后一个C代表的是压测模型的版本&#xff0c;在这之前还有TPC-A、…

[react 3种方法] 获取ant组件ref用ts如何定义?

获取ant的轮播图组件, 我用ts如何定义? Strongly Type useRef with ElementRef | Total TypeScript import React, { ElementRef } from react; const lunboRef useRef<ElementRef<typeof Carousel>>(null); <Carousel autoplay ref{lunboRef}> 这样就…