基于预测反馈的情感分析情境学习


✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨

🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。

我是Srlua小谢,在这里我会分享我的知识和经验。🎥

希望在这里,我们能一起探索IT世界的奥妙,提升我们的技能。🔮

记得先点赞👍后阅读哦~ 👏👏

📘📚 所属专栏:传知代码论文复现

欢迎访问我的主页:Srlua小谢 获取更多信息和资源。✨✨🌙🌙

​​

​​

目录

论文地址

主要内容

模型图

技术细节

第一步:先验预测获取

第二步:预测反馈设计

第三步:测试样本推断

实验结果

运行

基础配置

安装包

运行代码

小结


   本文所有资源均可在该地址处获取。

论文地址

Improving In-Context Learning with Prediction Feedback for SentimentAnalysis

主要内容

这篇文章的主要内容是关于如何通过预测反馈来改善大型语言模型(LLMs)在情感分析中的上下文内学习(In-Context Learning, ICL)能力。文章提出了一个框架,该框架通过以下三个步骤来增强ICL:

  1. 获取LLMs的先前预测:使用传统的ICL方法为每个候选示例产生先前预测。
  2. 设计基于正确性的预测反馈:根据预测的正确性将示例分类,并提供反馈以阐明先前预测与人类标注之间的差异。
  3. 利用反馈驱动的提示来提炼情感理解:在推理过程中,从每个子池中选择相关示例,并使用特定的反馈驱动提示来包装输入、预测、标签和反馈。

文章通过在九个情感分析数据集上的实验结果表明,该框架相较于传统的ICL方法在平均F1分数上提高了5.95%。此外,文章还探讨了该框架的有效性和鲁棒性,并指出了其在其他任务上的潜在应用。

模型图


文章的反馈提示框架主要分为三步。
第一步正常预测,第二步将预测结果和真实结果进行比较得到反馈,第三步构建获得反馈的示例构建最终的提示词优化模型的任务表现。

技术细节

第一步:先验预测获取


这一步的重点是获取对每条数据的预测值,以便后续的反馈提供。

为此,遵循传统的ICL,文章先从候选池中随机选择四条数据作为示例,它们与任务指令结合起来提示LLM进行预测。

这些预测称为先验预测,因为它们反映了大模型的先验情感理解。

第二步:预测反馈设计


先验预测的正确性直接标志着llm能否准确把握相应样例的情感。

为了让大模型在理解和推理方面的自我调整,文章首先将示例分为两部分,Pc和Pw,其中前者为先验正确分类的数据,后者为先验错误分类的数据。

然后,以自然语言的形式分别提供反馈:

第三步:测试样本推断


为了完成给定测试输入的推理,首先从每组数据(先验正确和先验错误得到反馈的数据)中检索k/2(文章中k默认取2)个示例。

由于文章的框架与检索模式无关,因此这里可以使用任何示例检索技术。

此外,文章还开发了一个反馈驱动的提示模板,将每个选定示例的输入、预测、标签和反馈包装成一个四件套,也就是现在的一个示例是包含数据、先验预测值、真实标签和反馈值。

其实简单来说,文章的改进点就是示例进行了改进,在示例中加入反馈了。


这就是文章提出的框架运用的实例了。
前四个都是示例
最后一个就是要进行预测的。

实验结果


表1展示了在不同的情感分析数据集上,使用不同方法进行情感分类、方面情感分类和情绪检测任务时的性能对比。表中的性能通过F1分数(一种综合考虑查准率和查全率的性能指标)来衡量。

其中Random表示随机选取样例,BM25、SBERT、MMR、KMeans都是选取样例的各种方法,目的是选择更有代表性或者语义相似度更高的示例,以帮助大模型提示学习。

文章默认使用的大模型是Llama2-13B-Chat

我们可以看到实验结果,文章提出的方法都有提升,特别是在情绪分析任务上提升最大。

在一些立场检测,自然语言理解的任务上,文章提出的框架仍然有用。


消融实验表明每个部分都是有用的,去除都会影响性能。

运行

基础配置

win10,内存16G
cpu:


gpu(显存6G)*1

安装包

python3.11

  pip install -r req.txt  --default-timeout=120 -i https://pypi.tuna.tsinghua.edu.cn/simple

运行代码

  run.bat

小结

文章的思路比较简单,但是效果确实有提升,提示学习还是有点东西的。

​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/890281.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt设置部件的阴影效果

QT中的比如QWidget,QLabel,QPushbutton,QCheckBox都可以设置阴影效果,就像这样: 以QWidget为例,开始尝试使用样式表的形式添加阴影,但没有效果,写法如下: QWidget#widget1::shadow{color: rgb…

AS-REP Roasting离线爆破攻击

针对一个域内用户,其账户选项有个设置叫作 “不要求 kerberos 预身份验证”,它默认是关闭的。 当 “不要求 kerberos 预身份验证” 选项被勾选,会出现以下效果: as-req 报文中不需要添加用户 hash 加密的时间戳,自动返…

JMeter配置原件-计数器

一、面临的问题: 由于本人的【函数助手对话框】中counter计数器每次加2,且只显示偶数(如下图所示),因此借助【配置原件-计数器】来实现计数功能。 如果有大佬知道解决方式,麻烦评论区解答一下,谢谢。 二、配置原件-c…

基于“2+1 链动模式商城小程序”的微商服务营销策略探究

摘要:本文探讨在竞争激烈的市场经济与移动互联网时代背景下,微商面临的机遇与挑战。着重分析“21 链动模式商城小程序”如何助力微商改变思路,通过重视服务、提升服务质量,以服务营销放大利润,实现从传统微商模式向更具…

Grad-CAM-解释CNN决策过程的可视化技术

Grad-CAM(Gradient-weighted Class Activation Mapping)是一种用于解释卷积神经网络(CNN)决策过程的可视化技术。其核心思想是通过计算分类分数相对于网络确定的卷积特征的梯度,来识别图像中哪些部分对分类结果最为重要…

文件防泄漏 | 文件防泄漏软件解决方案分享,网络数据泄露防护系统

文件防泄漏 | 文件防泄漏软件解决方案分享,网络数据泄露防护系统 企业面临的一大挑战是数据安全和隐私保护。 网络数据泄露不仅会导致经济损失,还会损害企业的声誉和客户关系。 为了应对这一挑战,域智盾软件应运而生,成为众多企…

EGO Swarm翻译

目录 摘要 Ⅰ 介绍 Ⅱ 相关工作 A . 单四旋翼局部规划 B . 拓扑规划 C. 分布式无人机集群 Ⅲ 基于梯度的局部规划隐式拓扑轨迹生成 A.无需ESDF梯度的局部路径规划 B.隐式拓扑轨迹生成 Ⅳ 无人机集群导航 A 机间避碰 B. 定位漂移补偿 C. 从深度图像中去除agent Ⅴ …

直流充电桩基本工作原理

1、控制导引电路 2、电动汽车直流快充工作原理 1)第一阶段 未充电自然状态阶段 充电枪处于自然阶段,充电枪上的按钮没有按下,也就是电路图中的开关S处于接通状态,此时R1 、 R2串联,检测点1处的电压为6V 2)…

七、网络安全-企业数据脱敏

文章目录 前言一、数据脱敏方法二、企业脱敏方案1. 数据库脱敏方案2. 历史数据脱敏3. 具体实现 三、日志脱敏方案四、输出脱敏 前言 数据脱敏‌ 随着用户对个人隐私数据的重视和法律法规的完善,数据安全显得愈发重要。一方面可以加强权限管理,减少能够接…

任务2 配置防火墙firewalld

基本概念 概述 支持动态更新防火墙规则 不重启即可创建、修改和删除规则 使用区域和服务来简化防火墙配置 区域 一组预定义的规则,防火墙策略集合(或策略模板) 把网络分配到不同的区域中,并为网络及其关联的网络接口或流量源…

HIPT论文阅读

题目《Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning》 论文地址:[2206.02647] Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning 项目地址:mahmoodlab/HI…

重拾设计模式--状态模式

文章目录 状态模式(State Pattern)概述状态模式UML图作用:状态模式的结构环境(Context)类:抽象状态(State)类:具体状态(Concrete State)类&#x…

[WiFi] WiFi 802.1x介绍及EAP认证流程整理

802.1X Wi-Fi 802.1X 是一种网络访问控制协议,常用于保护无线网络。它提供了一种基于端口的网络访问控制机制,主要用于在用户和网络之间建立安全的连接。以下是 802.1X 的一些关键特点: 认证框架 802.1X 使用 EAP(可扩展认证协议…

服务器数据恢复—V7000存储中多块磁盘出现故障导致业务中断的数据恢复案例

服务器存储数据恢复环境: 一台V7000存储上共12块SAS机械硬盘(其中1块是热备盘),组建了2组Mdisk,创建了一个pool。挂载在小型机上作为逻辑盘使用,小型机上安装的AIXSybase。 服务器存储故障: V7…

网络安全防范

实践内容 学习总结 PDR,$$P^2$$DR安全模型。 防火墙(Firewall): 网络访问控制机制,布置在网际间通信的唯一通道上。 不足:无法防护内部威胁,无法阻止非网络传播形式的病毒,安全策略…

你的第一个博客-第一弹

使用 Flask 开发博客 Flask 是一个轻量级的 Web 框架,适合小型应用和学习项目。我们将通过 Flask 开发一个简单的博客系统,支持用户注册、登录、发布文章等功能。 步骤: 安装 Flask 和其他必要库: 在开发博客之前,首…

LLaMA-Factory(一)环境配置及包下载

LLaMA-Factory(一)环境配置及包下载 本机配置1. git下载2.创建虚拟环境3. 下载官方包内依赖4. 下载bitsandbytes5. 启动项目6. 可能出现问题1:pip install 出现 error: subprocess-exited-with-error 错误7. 可能出现问题2: ModuleNotFoundEr…

clickhouse-题库

1、clickhouse介绍以及架构 clickhouse一个分布式列式存储数据库,主要用于在线分析查询 2、列式存储和行式存储有什么区别? 行式存储: 1)、数据是按行存储的 2)、没有建立索引的查询消耗很大的IO 3)、建…

计算机网络:运输层 —— TCP 的选择确认(SACK)

文章目录 TCP 的选择确认协商与启用工作机制接收方发送方 TCP 的选择确认 在 TCP 传输过程中,由于网络拥塞、链路故障等因素,数据可能会出现丢失或乱序的情况。传统的 TCP 确认机制是累积确认,TCP 接收方只能对按序收到的数据中的最高序号给…

HTML语法规范

HTML语法规则 HTML 标签是由尖括号包围的关键词&#xff0c;标签通常是成对出现的&#xff0c;例如 <html> 和 </html>&#xff0c;称为双标签 。标签对中的第一个标签是开始标签&#xff0c;第二个标签是结束标签单标签比较少&#xff0c;例如<br />&#x…