文章目录
- 前言
- 一、ROC的应用?
- 二、使用方式
- 1. 数据准备
- 2.绘图
- 可视化
前言
在差异分析中,ROC曲线可以用来评估不同组之间的分类性能差异。差异分析旨在比较不同组之间的特征差异,例如在基因表达研究中比较不同基因在不同条件或组织中的表达水平差异。ROC曲线可以帮助确定一个阈值,将样本分类为不同的组,进而评估分类的准确性。例如在基因表达研究中比较不同基因在不同条件或组织中的表达水平差异。ROC曲线可以帮助确定一个阈值,将样本分类为不同的组,进而评估分类的准确性。
一、ROC的应用?
在差异分析中,ROC曲线的应用主要包括以下两个方面:
-
特征选择:通过比较ROC曲线下的面积(AUC),可以评估不同特征对分类的贡献程度。较高的AUC值表示该特征在分类中起到了重要的作用,较低的AUC值则表示该特征对分类没有显著影响。基于ROC曲线的AUC值,可以筛选出在差异分析中具有显著区分性的特征。
-
模型评估:在差异分析中,常常会使用机器学习模型来构建分类器,以区分不同的组。通过绘制ROC曲线,可以评估模型对不同组之间的分类准确性。较高的AUC值表示模型具有较好的分类性能,较低的AUC值则表示模型的分类效果较差。基于ROC曲线的AUC值,可以选择合适的模型来进行差异分析。
二、使用方式
1. 数据准备
data <- read.csv('risk_SGO2.csv',header = T,row.names = 1)
数据格式
2.绘图
设定要绘制的不同的年份
cutoff1 <- 365
cutoff3 <- 1095
cutoff5 <- 1825
可视化
mayo1 <- survivalROC(Stime = data$OS.time,status = data$OS,marker = data$riskScore,predict.time = cutoff1,method = 'KM')# pdf('ROC_SGO2.pdf',width = 8,height = 6)
plot(mayo1$FP,mayo1$TP,type = 'l',col = '#B22222',xlim = c(0,1),ylim = c(0,1),lwd = 1)
abline(0,1,col = 'gray' ,lty = 2)
mayo3 <- survivalROC(Stime = data$OS.time,status = data$OS,marker = data$riskScore,predict.time = cutoff3,method = 'KM')lines(mayo3$FP,mayo3$TP,type = 'l',col = '#0072B5FF',xlim = c(0,1),ylim = c(0,1),lwd = 1)mayo5 <- survivalROC(Stime = data$OS.time,status = data$OS,marker = data$riskScore,predict.time = cutoff5,method = 'KM')
lines(mayo5$FP,mayo5$TP,type = 'l',col = '#cc9900',xlim = c(0,1),ylim = c(0,1),lwd = 1)
legend(0.6,0.5,c(paste('AUC at 1 year',round(mayo1$AUC,3)),paste('AUC at 3 year',round(mayo3$AUC,3)),paste('AUC at 5 year',round(mayo5$AUC,3))),x.intersp = 1,y.intersp = 0.8,lty = 1,lwd = 2,col = c('#B22222','#0072B5FF','#cc9900'),bty = 'n',seg.len = 1,cex = 1.2)
dev.off()
AUC(Area Under the Curve)的取值范围是0到1之间,表示了ROC曲线下的面积。AUC值越接近1,表示分类器的性能越好,能够更准确地区分不同组。AUC值越接近0.5,则表示分类器的性能较差,无法有效地区分不同组。
通常情况下,AUC值的解释如下:
- AUC值大于0.9,表示分类器具有很高的分类性能,能够非常准确地区分不同组,被认为是非常优秀的分类器。
- AUC值在0.7到0.9之间,表示分类器有一定的分类能力,能够较好地区分不同组,但可能存在一定程度的分类错误。
- AUC值在0.5到0.7之间,表示分类器的分类能力相对较弱,只能做出一些基本的区分。
- AUC值接近0.5,表示分类器的分类性能很差,无法有效地区分不同组。
需要注意的是,具体应用领域和数据集的特点也会对AUC值产生影响,因此在不同的实际应用中,对AUC值的解释会有所不同。一般来说,根据实际需求和任务,可以将AUC值的阈值设定为特定的数值来进行模型选择或评估。