算法日记 33 day 动态规划(打家劫舍,股票买卖)

今天来看看动态规划的打家劫舍和买卖股票的问题。

上题目!!!!

题目:打家劫舍

198. 打家劫舍 - 力扣(LeetCode)

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

题目分析:

        对于每一房间其实只有两种状态,偷或不偷,而且这个状态也取决于之前偷没偷。五部曲分析。

dp[i]:小偷到第i间放的最大金额

i的两种状态(偷,不偷)

不偷:dp[i]=dp[i-1]

偷:dp[i]=dp[i-2]

dp[0]=nums[0]    dp[1]=max(nums[0],nums[1])

public class Solution {public int Rob(int[] nums) {if(nums.Length==0) return 0;if(nums.Length==1) return nums[0];int[] dp=new int[nums.Length];dp[0]=nums[0];dp[1]=Math.Max(nums[0],nums[1]);for(int i=2;i<nums.Length;i++){dp[i]=Math.Max(dp[i-2]+nums[i],dp[i-1]);}return dp[nums.Length-1];}
}

 题目:打家劫舍 2

213. 打家劫舍 II - 力扣(LeetCode)

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

题目分析:

        房子围城一圈,那么对于首尾的房子而言,我们只能偷一个,其他的房间呢则尽量偷。本质上就和上一题一样了,无非是偷的时候划分一下区间即可,其他部分完全一样。

public class Solution {public int Rob(int[] nums) {if(nums.Length==0) return 0;if(nums.Length==1) return nums[0];int res1=RobRange(nums,0,nums.Length-2);int res2=RobRange(nums,1,nums.Length-1);return Math.Max(res1,res2);}public int RobRange(int[] nums,int start,int end){if (end == start) return nums[start];int[] dp=new int[nums.Length];dp[start]=nums[start];dp[start+1]=Math.Max(nums[start],nums[start+1]);for(int i=start+2;i<=end;i++){dp[i]=Math.Max(dp[i-2]+nums[i],dp[i-1]);}return dp[end];}
}

题目:打家劫舍 III

 337. 打家劫舍 III - 力扣(LeetCode)

小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。

除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。

给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。

题目分析: 

        房子的排列变成了树形结构,那么不触发警报意味着,如果我们偷了一个结点,那么他的两个子节点都不能偷。

        其实结点的状态任然是两种偷或者不偷。但是我们要偷取的金额最大,一定要考虑不偷这个的情况下,他的左右子节点偷不偷呢。所以需要将左右孩子的偷不偷的最大金额返回给父节点,那么对于这个树的遍历只能使用后序遍历的方式。

public class Solution {public int Rob(TreeNode root) {int[] res=RobTrue(root);return Math.Max(res[1],res[0]);}public int[] RobTrue(TreeNode root){if(root==null) return new int[2]{0,0};int[] leftDp=RobTrue(root.left);int[] rightDp=RobTrue(root.right);//下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。int res1=root.val+leftDp[0]+rightDp[0];//偷这个结点加上不偷左右孩子的最大值int res2=Math.Max(leftDp[0],leftDp[1])+Math.Max(rightDp[0],rightDp[1]);//不偷这个结点,就考虑左右孩子要不要偷return new int[]{res2,res1};}
}

题目:买卖股票的最佳时机

121. 买卖股票的最佳时机 - 力扣(LeetCode)

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

题目分析:

        这一题可以用暴力和贪心的方法解决。

暴力,依次枚举股票价格,并且找出最大差值作为结果即可。

贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。

两者差不多。

public class Solution {public int MaxProfit(int[] prices) {int min=int.MaxValue;int res=0;for(int i=0;i<prices.Length;i++){min=Math.Min(prices[i],min);res=Math.Max(res,prices[i]-min);}return res;}
}

动态规划:

        考虑股票的状态,其实就只有持有和不持有两种状态。注意这里的持有和不持有并不是买入卖出的意思。来看看dp数组的解释。

dp[i][0]:在第i天这支股票在我手上持有的最大金额(利润)

dp[i][1]:在第i天这支股票不在我手上持有的最大金额(利润)

注意两个的区别,因为这个持有和不持有他需要考虑前一天的状态,也就是说在这一天之前,这个股票我可能已经买入或者卖出了。这个很重要。

递推公式:

持有股票(1.在这一天之前我就持有了 2,之前我没有,但是今天买入后持有了)

1.dp[i-1][0]   2.-price[i]

 dp[i][0]=max(dp[i-1][0],-price[i])

不持有股票(1.在这一天之前我就没有了 2,之前我有,但是今天卖了后就没有了)

1.dp[i-1][1]   2.dp[i-1][0]+price[i]

 dp[i][0]=max(dp[i-1][1] ,dp[i-1][0]+price[i])

初始化就很好理解了,那么来看看代码

public class Solution {public int MaxProfit(int[] prices) {int[,] dp=new int[prices.Length,2];dp[0,0]=-prices[0];//持有这个股票dp[0,1]=0;//不持有这个股票for(int i=1;i<prices.Length;i++){dp[i,0]=Math.Max(-prices[i],dp[i-1,0]);dp[i,1]=Math.Max(dp[i-1,0]+prices[i],dp[i-1,1]);}return Math.Max(dp[prices.Length-1,0],dp[prices.Length-1,1]);}
}

 题目:买卖股票的最佳时机II

122. 买卖股票的最佳时机 II - 力扣(LeetCode)

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

题目分析:

         注意和上一题的区别,题目中的每一天意味着我可以多次买入卖出。但是上一题我只能操作一次。

        这里的dp的含义和上一题一样的,区别是dp的递推公式。

递推公式:

持有股票(1.在这一天之前我就持有了 2,(可能我已经卖出过了)之前我没有,但是今天买入后持有了)

1.dp[i-1][0]   2.dp[i-1][1]-price[i](上一天是不持有的状态)

 dp[i][0]=max(dp[i-1][0],dp[i-1][1]-price[i])

不持有股票(1.在这一天之前我就没有了 2,之前我有,但是今天卖了后就没有了)

1.dp[i-1][1]   2.dp[i-1][0]+price[i]

 dp[i][0]=max(dp[i-1][1] ,dp[i-1][0]+price[i])

public class Solution {public int MaxProfit(int[] prices) {int[,] dp=new int[prices.Length,2];dp[0,0]=-prices[0];//持有这个股票dp[0,1]=0;//不持有这个股票for(int i=1;i<prices.Length;i++){dp[i,0]=Math.Max(dp[i-1,1]-prices[i],dp[i-1,0]);dp[i,1]=Math.Max(dp[i-1,0]+prices[i],dp[i-1,1]);}return Math.Max(dp[prices.Length-1,0],dp[prices.Length-1,1]);}
}

 主要区别在于持有股票是需要考虑之前是否有卖出过,这一点在下面的题中很重要

题目:买卖股票的最佳时机III

123. 买卖股票的最佳时机 III - 力扣(LeetCode)

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

 题目分析:

        会看前面两题,第一题要求只能买入卖出1次,第二题能买入卖出无数次。而这一题最多两次,和上面两题一样,看看股票在第i天可能出现的状态。

第一次买入

第一次卖出

第二次买入

第二次卖出

那么dp数组的含义就很好理解了。

来看看递推公式,本质上和上面的题是一样的,无非就是买入卖出的时候需要考虑之前的状态,这一点和第二题一样。

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

对于初始化而言,需要注意的是你可以在一天内多次买入卖出,因为price的长度可以为1。 

public class Solution {public int MaxProfit(int[] prices) {int[,] dp=new int[prices.Length,5];dp[0,0]=0;//0,不操作dp[0,1]=-prices[0];//1,第一次持有dp[0,2]=0;//2,第一次不持有dp[0,3]=-prices[0];//3,第二次持有dp[0,4]=0;//4,第二次不持有for(int i=1;i<prices.Length;i++){dp[i,1]=Math.Max(dp[i-1,1],-prices[i]);dp[i,2]=Math.Max(dp[i-1,1]+prices[i],dp[i-1,2]);dp[i,3]=Math.Max(dp[i-1,3],dp[i,2]-prices[i]);dp[i,4]=Math.Max(dp[i-1,4],dp[i-1,3]+prices[i]);}return Math.Max(dp[prices.Length-1,4],dp[prices.Length-1,2]);}
}

 

对于更详细的解析与其他语言的代码块,可以去代码随想录上查看。

代码随想录 (programmercarl.com)

已刷题目:110

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/887454.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32 Keil5 attribute 关键字的用法

这篇文章记录一下STM32中attribute的用法。之前做项目的时候产品需要支持远程升级&#xff0c;要求版本只能向上迭代&#xff0c;不支持回退。当时想到的方案是把版本号放到bin文件的头部&#xff0c;设备端收到bin文件的首包部数据后判断是否满足升级要求&#xff0c;这里就可…

wordpress中Gravatar用户头像不显示,免插件实现添加自定义设置上传头像功能

该功能主要是用于免插件为用户添加头像&#xff0c;解决头像无法显示或无法更换自定义头像的问题 虽热这个功能使用场景和频率都非常低&#xff0c;但在有时候还是需要WordPress来显示头像的&#xff0c;但是zuanmang.net并不是每个人都有注册设置Gravatar头像。所以便需要我们…

aws服务--机密数据存储KMS(1)介绍和使用

在AWS(Amazon Web Services)中存储机密数据时,安全性和合规性是最重要的考虑因素。AWS 提供了多个服务和工具,帮助用户确保数据的安全性、机密性以及合规性。AWS Secrets Manager、KMS(Key Management Service)是推荐的存储机密数据的AWS服务和最佳实践。这里先看KMS。 …

51c~C语言~合集2

我自己的原文哦~ https://blog.51cto.com/whaosoft/12652943 一、嵌入式开发中的C语言编译器 如果你和一个优秀的程序员共事&#xff0c;你会发现他对他使用的工具非常熟悉&#xff0c;就像一个画家了解他的画具一样。----比尔.盖茨1 不能简单的认为是个工具 嵌入式程序开发…

ensp静态路由实验

一、实验目的 1、熟练掌握交换机的基本配置命令 2、熟练掌握静态路由的使用方法 3. 熟练掌握交换机端口模式 二、实验内容 需求&#xff1a; 根据要求利用现有实验设备组建小型局域网 实验设备&#xff1a; 交换机S37002台&#xff1b;PC机2台&#xff1b;路由器2台。 …

【git】commit之后,想撤销commit

一、已经commit&#xff0c;想要回退到上一步 保留代码 git reset --soft HEAD^回退到具体的哪一步 HEAD^的意思是上一个版本&#xff0c;也可以写成HEAD~1如果你进行了2次commit&#xff0c;想都撤回&#xff0c;可以使用HEAD~2二、git reflog 查看 sha值 git reflog 回到…

在 Ubuntu 上安装 Yarn 环境

在 Ubuntu 上安装 Yarn 环境 步骤 1: 更新系统步骤 2: 安装 Node.js步骤 3: 安装 Yarn方法 1: 使用 npm 安装方法 2: 使用 APT 安装 步骤 4: 验证安装总结 在 Ubuntu 上安装 Yarn 环境可以通过以下步骤完成&#xff1a; 步骤 1: 更新系统 首先&#xff0c;确保你的系统是最新…

深度学习3

五、自动微分 1、基础概念 模块 autograd 负责自动计算张量操作的梯度&#xff0c;具有自动求导功能&#xff1b;autograd 创建一个动态计算图来跟踪张量的操作&#xff0c;每个张量是计算图中的一个节点&#xff0c;节点之间的操作构成图的边。 属性 requires_grad 决定…

PostgreSQL 中约束Constraints

在 PostgreSQL 中&#xff0c;约束&#xff08;Constraints&#xff09;是用于限制进入数据库表中数据的规则。它们确保数据的准确性和可靠性&#xff0c;通过定义规则来防止无效数据的插入或更新。PostgreSQL 支持多种类型的约束&#xff0c;每种约束都有特定的用途和语法。以…

路由器中继与桥接

一 . 背景 现在的路由器大多数已经开始支持多种网络连接模式&#xff0c;以下将以TP-Link迷你无线路由器为例进行展开介绍。在TP-Link迷你无线路由器上一般有AP&#xff08;接入点&#xff09;模式&#xff0c;Router&#xff08;无线路由&#xff09;模式&#xff0c;Repeate…

2.13 转换矩阵

转换矩阵引用了库nalgebra&#xff0c;使用时研究具体实现。 use std::ops;use nalgebra::Perspective3;use crate::Scalar;use super::{Aabb, LineSegment, Point, Triangle, Vector};/// An affine transform #[repr(C)] #[derive(Debug, Clone, Copy, Default)] pub struct…

SQL进阶:如何跳过多个NULL值取第一个非NULL值?

NULL 一、问题描述二、ORACLE<一>、last_value () over ()<二>、lag () over()<三>、相关子查询 三、MYSQL<一>、全局变量<二>、coalesce() lag() over()<三>、相关子查询<四>、 recursive<五>、lag() over() min() over() …

wordpress获取文章总数、分类总数、tag总数等

在制作wordpress模板的时候会要调用网站的文章总数分类总数tag总数等这个数值&#xff0c;如果直接用count查询数据库那就太过分了。好在wordpress内置了一些标签可以直接获取到这些数值&#xff0c;本文整理了一些常用的wordpress网站总数标签。 文章总数 <?php $count_…

人工智能|计算机视觉——微表情识别(Micro expression recognition)的研究现状

一、简述 微表情是一种特殊的面部表情,与普通的表情相比,微表情主要有以下特点: 持续时间短,通常只有1/25s~1/3s;动作强度低,难以察觉;在无意识状态下产生,通常难以掩饰或伪装;对微表情的分析通常需要在视频中,而普通表情在图像中就可以分析。由于微表情在无意识状态…

玩转合宙Luat教程 基础篇④——程序基础(库、线程、定时器和订阅/发布)

文章目录 一、前言二、库三、线程四、定时器五、订阅/发布5.1 回调函数5.2 堵塞等待一、前言 教程目录大纲请查阅:玩转合宙Luat教程——导读 写一写Lua程序基础的东西。 包括如何调用库,如何创建线程、如何创建定时器,如何使用订阅/发布事件。 二、库 程序从main.lua开始通…

嵌入式系统与OpenCV

目录 一、OpenCV 简介 二、嵌入式 OpenCV 的安装方法 1. Ubuntu 系统下的安装 2. 嵌入式 ARM 系统中的安装 3. Windows10 和树莓派系统下的安装 三、嵌入式 OpenCV 的性能优化 1. 介绍嵌入式平台上对 OpenCV 进行优化的必要性。 2. 利用嵌入式开发工具&#xff0c;如优…

CentOS环境上离线安装python3及相关包

0. 准备操作系统及安装包 准备操作系统环境&#xff1a; 首先安装依赖包&#xff0c;安装相应的编译工具 [rootbigdatahost bin]# yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-d…

在 Ubuntu 上安装 MinIO 并设置密码

在 Ubuntu 上安装 MinIO 并设置密码 1. 更新系统2. 设置时区为中国大陆3. 安装 MinIO3.1 下载 MinIO3.2 赋予执行权限3.3 移动 MinIO 到系统路径 4. 创建 MinIO 用户和数据目录4.1 创建用户4.2 创建数据目录4.3 设置权限 5. 配置 MinIO5.1 创建配置文件 6. 创建 Systemd 服务文…

数学建模_基于对数和傅里叶变换的多通道图像增强模型(处理模糊)Matlab代码包教会使用,直接替换数据即可

图像增强模型&#xff1a;基于对数和傅里叶变换的多通道增强 模型简介 本博客介绍一种基于对数变换&#xff08;Logarithmic Transformation&#xff09;和傅里叶变换&#xff08;FFT&#xff09;的图像增强方法。该方法结合多尺度高斯滤波器和拉普拉斯模糊度分布评估&#xf…

Qt交叉编译x86和arm心得

最近一直在Linux上开发qt程序&#xff0c;主要工作是在x86的Ubuntu上开发编译调试程序&#xff0c;确定没有问题后交叉编译到arm的linux系统上运行 1.环境 Qt的交叉编译环境厂家已经提供了&#xff0c;嵌入式的同事帮我安装调试的&#xff0c;具体就是装了厂家给的gcc编译套件…