深度学习3

五、自动微分

1、基础概念

        模块 autograd  负责自动计算张量操作的梯度,具有自动求导功能;autograd   创建一个动态计算图来跟踪张量的操作,每个张量是计算图中的一个节点,节点之间的操作构成图的边。  

        属性 requires_grad 决定是否对张量进行梯度计算,默认不进行。

        方法 backward 进行反向传播,计算张量梯度。

        tensor.grad 返回梯度值

2、计算梯度

        元素必须为浮点数类型

2.1、标量

# 张量的梯度计算
import torch
x = torch.tensor(1.0,requires_grad = True)
y = x**2 +2*x +3
y.backward() # 梯度计算,(1,求y的导数;2、将标量带入导数函数求值)
# x.grad 表示求导带入值结果
print(x.grad)
import torch
# 多标量的梯度计算
x1 = torch.tensor(1., requires_grad=True)
x2 = torch.tensor(2., requires_grad=True)
y = x1**2 + 3*x2 +5
y.backward()
print(x1.grad)
print(x2.grad)

 2.2、向量

        损失函数接收向量后,需要进行整合称为一个元素(一半使用sum)才能进行反向传播。

反向传播后自动拆分为不同元素值的结果。

# 向量的梯度计算
import torch
x = torch.tensor([1.0,2.0,3.0],requires_grad = True)
y = x**2 +2*x +5
print(y)
y = y.sum()
print(y)
y.backward()
print(x.grad)
import torch
# 多向量的梯度计算
x1 = torch.tensor([1.,2.], requires_grad=True)
x2 = torch.tensor([2.,5.], requires_grad=True)
y = x1**2 + 3*x2 +5
y1 = y.sum()
y1.backward()
print(x1.grad)
print(x2.grad)
import torch
# 多向量的梯度计算
x1 = torch.tensor([1.,2.], requires_grad=True)
x2 = torch.tensor([2.,5.], requires_grad=True)
y = x1**2 + 3*x2 +5
y2 = y.mean()
y2.backward()
print(x1.grad)
print(x2.grad)

2.3、矩阵

# 矩阵的梯度计算
import torch
x1 = torch.tensor([[1.,2.],[3.,4.]], requires_grad=True)
y = x1**2 + 3*x1 +5
y2 = y.sum()
y2.backward()
print(x1.grad)
# 多矩阵的梯度计算
import torch
x1 = torch.tensor([[1.,2.],[3.,4.]], requires_grad=True)
x2 = torch.tensor([[11.,2.],[1.,22.]], requires_grad=True)
y = x1**2 + 3*x2 +5
y2 = y.sum()
y2.backward()
print(x1.grad)
print(x2.grad)

3、梯度控制

        由于 autograd   自动计算梯度,也就是在每个损失函数操作时都会自动运行,浪费资源,所以在无需求导的损失函数时,可以进行关闭求导功能。

3.1、全局控制

        创建tensor时,默认 requires_grad 等于 False;set_grad_enabled(False)

# 全局控制
import torch
x = torch.tensor(3.0,requires_grad = False)
y = x**2 +2*x +3
try:y.backward() print(x.grad)
except:print("操作报错")x = torch.tensor(3.0,requires_grad = True)
y = x**2 +2*x +3
torch.set_grad_enabled(False)
try:y.backward() print(x.grad)
except:print("操作报错")

3.2、with进行上下文管理

        with torch.no_grad():在这个代码块内创建的损失函数,不会求导

# with 控制
import torch
x = torch.tensor(3.0,requires_grad = True)
with torch.no_grad():y = x**2 +2*x +3
try:y.backward() print(x.grad)
except:print("操作报错")

3.3、装饰器函数控制

        将with torch.no_grad() 封装到函数,其他函数需要控制计算时候,装饰这个函数即可。

# 装饰器控制
import torchx = torch.tensor(3.0,requires_grad = True)def zsq(func):def wrapper(*args):with torch.no_grad():return func(*args)return wrapper@zsq  
def fun():y = x**2 +2*x +3try:y.backward() print(x.grad)except:print("操作报错")fun() # 调用函数

4、梯度清零

        在多个损失函数反向传播或重复反向传播情况下,梯度值将累计以和的形式返回结果

# 累计梯度
import torch
# 多个损失函数反向传播
x =torch.tensor(4.0,requires_grad=True)y = 2*x**2 +7 # 第一个损失函数
y.backward() 
print(x.grad)  # 导数结果为 16.z = x**2  # 第二个损失函数
z.backward()
print(x.grad) # 导数结果为 8.   累加就是24.
wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

         当进行梯度计算时,无法直观反应某次梯度的值,所以需要梯度清零:grad.zero_(),需要梯度存在后才可以使用清零,否则获取梯度为None,清零会报错,清零时将元素值变成0.,不会变成None

# 梯度清理
import torch
x =torch.tensor(4.0,requires_grad=True)
y = 2*x**2 +7
try:x.grad.zero_()
except:print("梯度为None,不能清零")
y.backward() # 反向传播
print(x.grad)z = x**2
z.backward() 
print(x.grad)x.grad.zero_()  # 梯度清理
print(x.grad is None)
print(x.grad)
wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

5、梯度下降算法结合

import torch
w = torch.tensor(5., requires_grad=True) # 初始化 wnum =0while True: num+=1if num > 50: break# 创建损失函数loss = w**2a=0# 梯度清零if w.grad is None: pass else: a = w.grad.dataw.grad.zero_()# 方向传播loss.backward()b = w.grad.dataif (b>a and a!=0) or b ==0:break# 当前斜率print("斜率:\n",w.grad)w.data = w.data - 0.4*w.grad# 当前斜率print("更新的横坐标:\n",w.data)# 当前斜率print("----------",num)
wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

6、叶子节点

        当一个tensor设置为可以求导,那么其性质变换, 与普通tensor有区别,对数据操作时需要索引出一个只有其数据的普通tensor

        叶子节点 detach() ,将tensor的数据创建为新的tensor,两者内存不一样,数据共享,这时候可以对新的tensor数据操作。

import torch
x= torch.tensor([1., 2., 3.], requires_grad=True)try:x2 = x.numpy() # 如果x是一个可以求导的张量,那么它就不能直接当作普通tensor使用print(x2)
except :print("转化错误")try:x3 = x.detach()# 取出叶子节点print(x3)print(x)x2 = x3.numpy()  # 取出叶子节点后就可以转numpy了print(x2)
except :pass

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/887446.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

路由器中继与桥接

一 . 背景 现在的路由器大多数已经开始支持多种网络连接模式,以下将以TP-Link迷你无线路由器为例进行展开介绍。在TP-Link迷你无线路由器上一般有AP(接入点)模式,Router(无线路由)模式,Repeate…

人工智能|计算机视觉——微表情识别(Micro expression recognition)的研究现状

一、简述 微表情是一种特殊的面部表情,与普通的表情相比,微表情主要有以下特点: 持续时间短,通常只有1/25s~1/3s;动作强度低,难以察觉;在无意识状态下产生,通常难以掩饰或伪装;对微表情的分析通常需要在视频中,而普通表情在图像中就可以分析。由于微表情在无意识状态…

嵌入式系统与OpenCV

目录 一、OpenCV 简介 二、嵌入式 OpenCV 的安装方法 1. Ubuntu 系统下的安装 2. 嵌入式 ARM 系统中的安装 3. Windows10 和树莓派系统下的安装 三、嵌入式 OpenCV 的性能优化 1. 介绍嵌入式平台上对 OpenCV 进行优化的必要性。 2. 利用嵌入式开发工具,如优…

React(五)——useContecxt/Reducer/useCallback/useRef/React.memo/useMemo

文章目录 项目地址十六、useContecxt十七、useReducer十八、React.memo以及产生的问题18.1组件嵌套的渲染规律18.2 React.memo18.3 引出问题 十九、useCallback和useMemo19.1 useCallback对函数进行缓存19.2 useMemo19.2.1 基本的使用19.2.2 缓存属性数据 19.2.3 对于更新的理解…

STM32设计学生宿舍监测控制系统-分享

目录 前言 一、本设计主要实现哪些很“开门”功能? 二、电路设计原理图 电路图采用Altium Designer进行设计: 三、实物设计图 四、程序源代码设计 五、获取资料内容 前言 本项目旨在利用STM32单片机为核心,结合传感器技术、无线通信技…

华为无线AC+AP组网实际应用小结

之前公司都是使用的H3C的交换机、防火墙以及无线AC和AP的,最近优化下无线网络,说新的设备用华为的,然后我是直到要部署的当天才知道用华为设备的,就很无语了,一点准备没有,以下为这次的实际操作记录吧&…

Linux麦克风录音实战

在 Linux 上使用麦克风进行录音可以通过多种方式实现,包括使用命令行工具、图形界面应用程序以及编程接口。下面我将介绍几种常见的方法,从简单的命令行工具到使用 PortAudio 库进行编程。 一. 使用arecord命令行工具 arecord 是 ALSA(Adva…

虚拟苹果系统MacOS中新建自定义C++Dylib并用C++测试程序测试

前言 苹果系统中Dylib的建立和使用是一个非常基础的功能。本博客使用苹果虚拟机MacOS Ventura 13.6.7,XCode15.2,来复现这个过程。供参考。 1、Dylib框架的建立 2、增加一个函数 注意,向导自动生成的Helloworld函数中嵌套了一个函数Helloworl…

Windows系统电脑安装TightVNC服务端结合内网穿透实现异地远程桌面

文章目录 前言1. 安装TightVNC服务端2. 局域网VNC远程测试3. Win安装Cpolar工具4. 配置VNC远程地址5. VNC远程桌面连接6. 固定VNC远程地址7. 固定VNC地址测试 前言 在追求高效、便捷的数字化办公与生活的今天,远程桌面服务成为了连接不同地点、不同设备之间的重要桥…

ThingsBoard规则链节点:Azure IoT Hub 节点详解

目录 引言 1. Azure IoT Hub 节点简介 2. 节点配置 2.1 基本配置示例 3. 使用场景 3.1 数据传输 3.2 数据分析 3.3 设备管理 4. 实际项目中的应用 4.1 项目背景 4.2 项目需求 4.3 实现步骤 5. 总结 引言 ThingsBoard 是一个开源的物联网平台,提供了设备…

如何利用 Puppeteer 的 Evaluate 函数操作网页数据

介绍 在现代的爬虫技术中,Puppeteer 因其强大的功能和灵活性而备受青睐。Puppeteer 是一个用于控制 Chromium 或 Chrome 浏览器的 Node.js 库,提供了丰富的 API 接口,能够帮助开发者高效地处理动态网页数据。本文将重点讲解 Puppeteer 的 ev…

【GAMES101笔记速查——Lecture 19 Cameras,Lenses and Light Fields】

本章节内容:相机、棱镜、光场 计算机图形学的两种成像方法: 1.合成方法:光栅化、光线追踪(展示出现实没有的东西) 2.捕捉方法:相机(捕捉现实已有的东西) 目录 1 相机 1.1 针孔相…

【C语言】传值调用与传址调用:深度解析与实现

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C语言 文章目录 💯前言💯什么是传值调用和传址调用?1. 传值调用(Call by Value)2. 传址调用(Call by Reference) 💯传值调…

科技赋能健康:多商户Java版商城系统引领亚健康服务数字化变革

在当今社会,随着生活节奏的加快和工作压力的增大,越来越多的人处于亚健康状态。据《The Lancet》期刊2023年的统计数据显示,全球亚健康状态的人群比例已高达82.8%,这一数字背后,隐藏着巨大的健康风险和社会成本。亚健康…

vue实现列表滑动下拉加载数据

一、实现效果 二、实现思路 使用滚动事件监听器来检测用户是否滚动到底部&#xff0c;然后加载更多数据 监听滚动事件。检测用户是否滚动到底部。加载更多数据。 三、案例代码 <div class"drawer-content"><div ref"loadMoreTrigger" class&q…

【CSP CCF记录】201809-2第14次认证 买菜

题目 样例输入 4 1 3 5 6 9 13 14 15 2 4 5 7 10 11 13 14 样例输出 3 思路 易错点&#xff1a;仅考虑所给样例&#xff0c;会误以为H和W两人的装车时间是一一对应的&#xff0c;那么提交结果的运行错误就会让你瞬间清醒。 本题关键是认识到H和W的装车时间不一定一一对应&…

学习threejs,使用设置bumpMap凹凸贴图创建褶皱,实现贴图厚度效果

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;threejs gis工程师 文章目录 一、&#x1f340;前言1.1 ☘️THREE.MeshPhongMaterial高…

GoF设计模式——结构型设计模式分析与应用

文章目录 UML图的结构主要表现为&#xff1a;继承&#xff08;抽象&#xff09;、关联 、组合或聚合 的三种关系。1. 继承&#xff08;抽象&#xff0c;泛化关系&#xff09;2. 关联3. 组合/聚合各种可能的配合&#xff1a;1. 关联后抽象2. 关联的集合3. 组合接口4. 递归聚合接…

Unity中动态生成贴图并保存成png图片实现

实现原理&#xff1a; 要生成长x宽y的贴图&#xff0c;就是生成x*y个像素填充到贴图中&#xff0c;如下图&#xff1a; 如果要改变局部颜色&#xff0c;就是从x1到x2(x1<x2),y1到y2(y1<y2)这个范围做处理&#xff0c; 或者要想做圆形就是计算距某个点&#xff08;x1,y1&…

互联网直播/点播EasyDSS视频推拉流平台视频点播有哪些技术特点?

在数字化时代&#xff0c;视频点播应用已经成为我们生活中不可或缺的一部分。监控技术与视频点播的结合正悄然改变着我们获取和享受媒体内容的方式。这一变革不仅体现在技术层面的进步&#xff0c;更深刻地影响了我们。 EasyDSS视频直播点播平台是一款高性能流媒体服务软件。E…