Prompt Engineering 提示工程

一、什么是提示工程(Prompt Engineering)

  Prompt 就是发给大模型的指令,比如讲个笑话、用 Python 编个贪吃蛇游戏等;大模型只接受一种输入,那就是 prompt。本质上,所有大模型相关的工程工作,都是围绕 prompt 展开的;提示工程门槛低天花板高。高质量prompt的核心要点:具体、丰富、少歧义

1.1、prompt的典型构成

角色:给AI定义一个最匹配任务角色,比如:你是一位数学老师,你是一名软件工程师等
指示:对任务进行描述
上下文:给出与任务相关的其它背景信息
例子:必要时给出举例
输入:任务的输入信息
输出:输出的格式描述

1.2、对话系统的基本模块和思路

1、把输入的自然语音对话,转成结构化的信息NLU
2、用传统软件手段处理结构化信息,得到处理策略
3、把策略转成自然语言输出NLG
在这里插入图片描述
对话流程举例:
在这里插入图片描述
改变习惯,优先用prompt解决问题,用好prompt可以减轻后续处理的工作量和复杂度。
重点:我们发给大模型的prompt,不会改变大模型的权重

1.3、用prompt实现逐步调优

# 导入依赖库
from openai import OpenAI
# 初始化 OpenAI 客户端
client = OpenAI(api_key="sk-...",base_url='https:....')# 默认使用环境变量中的 OPENAI_API_KEY 和 OPENAI_BASE_URLdef get_completion(prompt, response_format="text", model="gpt-3.5-turbo"):messages = [{"role": "user", "content": prompt}]    # 将 prompt 作为用户输入response = client.chat.completions.create(model=model,messages=messages,temperature=0,                                  # 模型输出的随机性,0 表示随机性最小response_format={"type": response_format},     # 返回消息的格式,text 或 json_object)return response.choices[0].message.content          # 返回模型生成的文本# 任务描述
instruction = """
你的任务是识别用户对手机流量套餐产品的选择条件。
每种流量套餐产品包含三个属性:名称,月费价格,月流量。
根据用户输入,识别用户在上述三种属性上的需求是什么。
"""
# 用户输入
input_text = """
办个100G的套餐。
"""
# prompt 模版。instruction 和 input_text 会被替换为上面的内容
prompt = f"""
{instruction}用户输入:
{input_text}
"""
# 调用大模型
response = get_completion(prompt)
print(response)

在这里插入图片描述

# 输出格式
output_format = """
以 JSON 格式输出
"""
# 稍微调整下咒语,加入输出格式
prompt = f"""
{instruction}
{output_format}
用户输入:
{input_text}
"""
# 调用大模型
response = get_completion(prompt, response_format="json_object")
print(response)

在这里插入图片描述

1.实现一个NLU
# 任务描述
instruction = """
你的任务是识别用户对手机流量套餐产品的选择条件。
每种流量套餐产品包含三个属性:名称,月费价格,月流量。
根据用户输入,识别用户在上述三种属性上的需求是什么。
"""
# 用户输入
input_text = """
办个100G的套餐。
"""
# prompt 模版。instruction 和 input_text 会被替换为上面的内容
prompt = f"""
{instruction}
用户输入:
{input_text}
"""
# 调用大模型
response = get_completion(prompt)
print(response)

在这里插入图片描述

2.约定输出格式
# 任务描述增加了字段的英文标识符
instruction = """
你的任务是识别用户对手机流量套餐产品的选择条件。
每种流量套餐产品包含三个属性:名称(name),月费价格(price),月流量(data)。
根据用户输入,识别用户在上述三种属性上的需求是什么。
"""# 输出格式增加了各种定义、约束
output_format = """
以JSON格式输出。
1. name字段的取值为string类型,取值必须为以下之一:经济套餐、畅游套餐、无限套餐、校园套餐 或 null;
2. price字段的取值为一个结构体 或 null,包含两个字段:
(1) operator, string类型,取值范围:'<='(小于等于), '>=' (大于等于), '=='(等于)
(2) value, int类型
3. data字段的取值为取值为一个结构体 或 null,包含两个字段:
(1) operator, string类型,取值范围:'<='(小于等于), '>=' (大于等于), '=='(等于)
(2) value, int类型或string类型,string类型只能是'无上限'
4. 用户的意图可以包含按price或data排序,以sort字段标识,取值为一个结构体:
(1) 结构体中以"ordering"="descend"表示按降序排序,以"value"字段存储待排序的字段
(2) 结构体中以"ordering"="ascend"表示按升序排序,以"value"字段存储待排序的字段
输出中只包含用户提及的字段,不要猜测任何用户未直接提及的字段,不输出值为null的字段。
"""input_text = "办个100G以上的套餐"
# input_text = "有没有便宜的套餐"prompt = f"""
{instruction}
{output_format}
用户输入:
{input_text}
"""
response = get_completion(prompt, response_format="json_object")
print(response)

在这里插入图片描述

3.把输出格式定义更精细
examples = """
便宜的套餐:{"sort":{"ordering"="ascend","value"="price"}}
有没有不限流量的:{"data":{"operator":"==","value":"无上限"}}
流量大的:{"sort":{"ordering"="descend","value"="data"}}
100G以上流量的套餐最便宜的是哪个:{"sort":{"ordering"="ascend","value"="price"},"data":{"operator":">=","value":100}}
月费不超过200的:{"price":{"operator":"<=","value":200}}
就要月费180那个套餐:{"price":{"operator":"==","value":180}}
经济套餐:{"name":"经济套餐"}
土豪套餐:{"name":"无限套餐"}
"""
input_text = "有没有土豪套餐"
# input_text = "办个200G的套餐"
# input_text = "有没有流量大的套餐"
# input_text = "200元以下,流量大的套餐有啥"
# input_text = "你说那个10G的套餐,叫啥名字"
# 有了例子
prompt = f"""
{instruction}
{output_format}
例如:
{examples}
用户输入:
{input_text}
"""
response = get_completion(prompt, response_format="json_object")
print(response)

在这里插入图片描述

4.加入例子

例子可以让输出更稳定:答错的,一定给例子;答对了,也给例子,能更稳定。

instruction = """
你的任务是识别用户对手机流量套餐产品的选择条件。
每种流量套餐产品包含三个属性:名称(name),月费价格(price),月流量(data)。
根据对话上下文,识别用户在上述三种属性上的需求是什么。识别结果要包含整个对话的信息。
"""# 输出描述
output_format = """
以JSON格式输出。
1. name字段的取值为string类型,取值必须为以下之一:经济套餐、畅游套餐、无限套餐、校园套餐 或 null;2. price字段的取值为一个结构体 或 null,包含两个字段:
(1) operator, string类型,取值范围:'<='(小于等于), '>=' (大于等于), '=='(等于)
(2) value, int类型3. data字段的取值为取值为一个结构体 或 null,包含两个字段:
(1) operator, string类型,取值范围:'<='(小于等于), '>=' (大于等于), '=='(等于)
(2) value, int类型或string类型,string类型只能是'无上限'4. 用户的意图可以包含按price或data排序,以sort字段标识,取值为一个结构体:
(1) 结构体中以"ordering"="descend"表示按降序排序,以"value"字段存储待排序的字段
(2) 结构体中以"ordering"="ascend"表示按升序排序,以"value"字段存储待排序的字段输出中只包含用户提及的字段,不要猜测任何用户未直接提及的字段。不要输出值为null的字段。
"""# 多轮对话的例子
examples = """
客服:有什么可以帮您
用户:100G套餐有什么
{"data":{"operator":">=","value":100}}
客服:有什么可以帮您
用户:100G套餐有什么
客服:我们现在有无限套餐,不限流量,月费300元
用户:太贵了,有200元以内的不
{"data":{"operator":">=","value":100},"price":{"operator":"<=","value":200}}
客服:有什么可以帮您
用户:便宜的套餐有什么
客服:我们现在有经济套餐,每月50元,10G流量
用户:100G以上的有什么{"data":{"operator":">=","value":100},"sort":{"ordering"="ascend","value"="price"}}客服:有什么可以帮您
用户:100G以上的套餐有什么
客服:我们现在有畅游套餐,流量100G,月费180元
用户:流量最多的呢
{"sort":{"ordering"="descend","value"="data"},"data":{"operator":">=","value":100}}
"""
input_text = "哪个便宜"
# input_text = "无限量哪个多少钱"
# input_text = "流量最大的多少钱"
# 多轮对话上下文
context = f"""
客服:有什么可以帮您
用户:有什么100G以上的套餐推荐
客服:我们有畅游套餐和无限套餐,您有什么价格倾向吗
用户:{input_text}
"""
prompt = f"""
{instruction}
{output_format}
{examples}
{context}
"""
response = get_completion(prompt, response_format="json_object")
print(response)

在这里插入图片描述

5.实现对话策略和NLG
import json
import copy
from openai import OpenAIinstruction = """
你的任务是识别用户对手机流量套餐产品的选择条件。
每种流量套餐产品包含三个属性:名称(name),月费价格(price),月流量(data)。
根据用户输入,识别用户在上述三种属性上的需求是什么。
"""# 输出格式
output_format = """
以JSON格式输出。
1. name字段的取值为string类型,取值必须为以下之一:经济套餐、畅游套餐、无限套餐、校园套餐 或 null;2. price字段的取值为一个结构体 或 null,包含两个字段:
(1) operator, string类型,取值范围:'<='(小于等于), '>=' (大于等于), '=='(等于)
(2) value, int类型3. data字段的取值为取值为一个结构体 或 null,包含两个字段:
(1) operator, string类型,取值范围:'<='(小于等于), '>=' (大于等于), '=='(等于)
(2) value, int类型或string类型,string类型只能是'无上限'4. 用户的意图可以包含按price或data排序,以sort字段标识,取值为一个结构体:
(1) 结构体中以"ordering"="descend"表示按降序排序,以"value"字段存储待排序的字段
(2) 结构体中以"ordering"="ascend"表示按升序排序,以"value"字段存储待排序的字段输出中只包含用户提及的字段,不要猜测任何用户未直接提及的字段。
DO NOT OUTPUT NULL-VALUED FIELD! 确保输出能被json.loads加载。
"""examples = """
便宜的套餐:{"sort":{"ordering"="ascend","value"="price"}}
有没有不限流量的:{"data":{"operator":"==","value":"无上限"}}
流量大的:{"sort":{"ordering"="descend","value"="data"}}
100G以上流量的套餐最便宜的是哪个:{"sort":{"ordering"="ascend","value"="price"},"data":{"operator":">=","value":100}}
月费不超过200的:{"price":{"operator":"<=","value":200}}
就要月费180那个套餐:{"price":{"operator":"==","value":180}}
经济套餐:{"name":"经济套餐"}
土豪套餐:{"name":"无限套餐"}
"""class NLU:def __init__(self):self.prompt_template = f"""{instruction}\n\n{output_format}\n\n{examples}\n\n用户输入:\n__INPUT__"""def _get_completion(self, prompt, model="gpt-3.5-turbo"):messages = [{"role": "user", "content": prompt}]response = client.chat.completions.create(model=model,messages=messages,temperature=0,  # 模型输出的随机性,0 表示随机性最小response_format={"type": "json_object"},)semantics = json.loads(response.choices[0].message.content)return {k: v for k, v in semantics.items() if v}def parse(self, user_input):prompt = self.prompt_template.replace("__INPUT__", user_input)return self._get_completion(prompt)class DST:def __init__(self):passdef update(self, state, nlu_semantics):if "name" in nlu_semantics:state.clear()if "sort" in nlu_semantics:slot = nlu_semantics["sort"]["value"]if slot in state and state[slot]["operator"] == "==":del state[slot]for k, v in nlu_semantics.items():state[k] = vreturn stateclass MockedDB:def __init__(self):self.data = [{"name": "经济套餐", "price": 50, "data": 10, "requirement": None},{"name": "畅游套餐", "price": 180, "data": 100, "requirement": None},{"name": "无限套餐", "price": 300, "data": 1000, "requirement": None},{"name": "校园套餐", "price": 150, "data": 200, "requirement": "在校生"},]def retrieve(self, **kwargs):records = []for r in self.data:select = Trueif r["requirement"]:if "status" not in kwargs or kwargs["status"] != r["requirement"]:continuefor k, v in kwargs.items():if k == "sort":continueif k == "data" and v["value"] == "无上限":if r[k] != 1000:select = Falsebreakif "operator" in v:if not eval(str(r[k])+v["operator"]+str(v["value"])):select = Falsebreakelif str(r[k]) != str(v):select = Falsebreakif select:records.append(r)if len(records) <= 1:return recordskey = "price"reverse = Falseif "sort" in kwargs:key = kwargs["sort"]["value"]reverse = kwargs["sort"]["ordering"] == "descend"return sorted(records, key=lambda x: x[key], reverse=reverse)class DialogManager:def __init__(self, prompt_templates):self.state = {}self.session = [{"role": "system","content": "你是一个手机流量套餐的客服代表,你叫小智。可以帮助用户选择最合适的流量套餐产品。"}]self.nlu = NLU()self.dst = DST()self.db = MockedDB()self.prompt_templates = prompt_templatesdef _wrap(self, user_input, records):if records:prompt = self.prompt_templates["recommand"].replace("__INPUT__", user_input)r = records[0]for k, v in r.items():prompt = prompt.replace(f"__{k.upper()}__", str(v))else:prompt = self.prompt_templates["not_found"].replace("__INPUT__", user_input)for k, v in self.state.items():if "operator" in v:prompt = prompt.replace(f"__{k.upper()}__", v["operator"]+str(v["value"]))else:prompt = prompt.replace(f"__{k.upper()}__", str(v))return promptdef _call_chatgpt(self, prompt, model="gpt-3.5-turbo"):session = copy.deepcopy(self.session)session.append({"role": "user", "content": prompt})response = client.chat.completions.create(model=model,messages=session,temperature=0,)return response.choices[0].message.contentdef run(self, user_input):# 调用NLU获得语义解析semantics = self.nlu.parse(user_input)print("===semantics===")print(semantics)# 调用DST更新多轮状态self.state = self.dst.update(self.state, semantics)print("===state===")print(self.state)# 根据状态检索DB,获得满足条件的候选records = self.db.retrieve(**self.state)# 拼装prompt调用chatgptprompt_for_chatgpt = self._wrap(user_input, records)print("===gpt-prompt===")print(prompt_for_chatgpt)# 调用chatgpt获得回复response = self._call_chatgpt(prompt_for_chatgpt)# 将当前用户输入和系统回复维护入chatgpt的sessionself.session.append({"role": "user", "content": user_input})self.session.append({"role": "assistant", "content": response})return response

加入垂直知识:加入指定情况夏的回答模板,话术更专业。

prompt_templates = {"recommand": "用户说:__INPUT__ \n\n向用户介绍如下产品:__NAME__,月费__PRICE__元,每月流量__DATA__G。","not_found": "用户说:__INPUT__ \n\n没有找到满足__PRICE__元价位__DATA__G流量的产品,询问用户是否有其他选择倾向。"
}dm = DialogManager(prompt_templates)
# 两轮对话
print("# Round 1")
response = dm.run("300太贵了,200元以内有吗")
print("===response===")
print(response)print("# Round 2")
response = dm.run("流量大的")
print("===response===")
print(response)

在这里插入图片描述
增加约束:改变语气、口吻等风格

# 定义语气要求。"NO COMMENTS. NO ACKNOWLEDGEMENTS."是常用 prompt,表示「有事儿说事儿,别 bb」
ext = "很口语,亲切一些。不用说“抱歉”。直接给出回答,不用在前面加“小瓜说:”。NO COMMENTS. NO ACKNOWLEDGEMENTS."
prompt_templates = {k: v+ext for k, v in prompt_templates.items()}
dm = DialogManager(prompt_templates)response = dm.run("300太贵了,200元以内有吗")
response = dm.run("流量大的")
print("===response===")
print(response)

在这里插入图片描述
实现统一口径,用例子实现。

ext = "\n\n遇到类似问题,请参照以下回答:\n问:流量包太贵了\n答:亲,我们都是全省统一价哦。"
prompt_templates = {k: v+ext for k, v in prompt_templates.items()}
dm = DialogManager(prompt_templates)response = dm.run("这流量包太贵了")
print("===response===")
print(response)

在这里插入图片描述

6.纯api实现
import json
from openai import OpenAIdef print_json(data):"""打印参数。如果参数是有结构的(如字典或列表),则以格式化的 JSON 形式打印;否则,直接打印该值。"""if hasattr(data, 'model_dump_json'):data = json.loads(data.model_dump_json())if (isinstance(data, (list, dict))):print(json.dumps(data,indent=4,ensure_ascii=False))else:print(data)# 定义消息历史。先加入 system 消息,里面放入对话内容以外的 prompt
messages = [{"role": "system","content": """
你是一个手机流量套餐的客服代表,你叫小瓜。可以帮助用户选择最合适的流量套餐产品。可以选择的套餐包括:
经济套餐,月费50元,10G流量;
畅游套餐,月费180元,100G流量;
无限套餐,月费300元,1000G流量;
校园套餐,月费150元,200G流量,仅限在校生。
"""}
]def get_completion(prompt, model="gpt-3.5-turbo"):# 把用户输入加入消息历史messages.append({"role": "user", "content": prompt})response = client.chat.completions.create(model=model,messages=messages,temperature=0.7,)msg = response.choices[0].message.content# 把模型生成的回复加入消息历史。很重要,否则下次调用模型时,模型不知道上下文messages.append({"role": "assistant", "content": msg})return msg
get_completion("流量最大的套餐是什么?")
get_completion("多少钱?")
get_completion("给我办一个")
print_json(messages)

在这里插入图片描述

1.4、进阶技巧

(1)思维链
1.让 AI 生成更多相关的内容,构成更丰富的上文,从而提升下文正确的概率
2.对涉及计算和逻辑推理等复杂问题,尤为有效
方法:提示词中加入如:请一步一步分析以下对话;请仔细一步步想想等。
(2)自洽性
一种对抗幻觉的手段。就像我们做数学题,要多次验算一样。
同样 prompt 跑多次,通过投票选出最终结果。

from openai import OpenAIdef get_completion(prompt, model="gpt-3.5-turbo"):messages = [{"role": "user", "content": prompt}]response = client.chat.completions.create(model=model,messages=messages,temperature=0.9,    # 必须加大随机性)return response.choices[0].message.contentinstruction = """
给定一段用户与手机流量套餐客服的对话,。
你的任务是判断客服介绍产品信息的准确性:当向用户介绍流量套餐产品时,客服人员必须准确提及产品名称、月费价格和月流量总量。上述信息缺失一项或多项,或信息与实时不符,都算信息不准确已知产品包括:经济套餐:月费50元,月流量10G
畅游套餐:月费180元,月流量100G
无限套餐:月费300元,月流量1000G
校园套餐:月费150元,月流量200G,限在校学生办理
"""# 输出描述
output_format = """
如果信息准确,输出:Y
如果信息不准确,输出:N
"""context = """
用户:你们有什么流量大的套餐
客服:您好,我们现在正在推广无限套餐,每月300元就可以享受1000G流量,您感兴趣吗
"""cot = "请一步一步分析以下对话"prompt = f"""
{instruction}{output_format}{cot}对话记录:
{context}
"""# 连续调用 5 次
for _ in range(5):print(f"------第{_+1}次------")response = get_completion(prompt)print(response)

在这里插入图片描述

二、提示工程经验总结

1、别急着上代码,先尝试用 prompt 解决;
2、别迷信 prompt,合理组合传统方法提升确定性,减少幻觉;
3、定义角色、给例子是最常用的技巧;
4、必要时上思维链,结果更准确;
5、防御 prompt 攻击非常重要,但很难。

三、OpenAI API 的几个重要参数

def get_chat_completion(session, user_prompt, model="gpt-3.5-turbo"):session.append({"role": "user", "content": user_prompt})response = client.chat.completions.create(model=model,messages=session,# 以下默认值都是官方默认值temperature=1,          # 生成结果的多样性。取值 0~2 之间,越大越发散,越小越收敛seed=None,              # 随机数种子。指定具体值后,temperature 为 0 时,每次生成的结果都一样stream=False,           # 数据流模式,一个字一个字地接收response_format={"type": "text"},  # 返回结果的格式,json_object 或 texttop_p=1,                # 随机采样时,只考虑概率前百分之多少的 token。不建议和 temperature 一起使用n=1,                    # 一次返回 n 条结果max_tokens=100,         # 每条结果最多几个 token(超过截断)presence_penalty=0,     # 对出现过的 token 的概率进行降权frequency_penalty=0,    # 对出现过的 token 根据其出现过的频次,对其的概率进行降权logit_bias={},          # 对指定 token 的采样概率手工加/降权,不常用)msg = response.choices[0].message.contentreturn msg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/885962.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QMetaObject::invokeMethod和QObject的信号槽机制比较

QMetaObject::invokeMethod 和 QObject 的信号槽机制虽然都涉及到了动态调用对象的方法,但它们在实现和使用上有一些重要的区别。下面详细解释这两者的异同。 1. 信号槽机制 定义 信号槽机制是 Qt 框架中的一种通信机制,用于在对象之间传递消息。信号槽机制的核心思想是将…

智慧水利综合解决方案

1. 引言 智慧水利综合解决方案集成了先进的信息技术与水利专业知识&#xff0c;旨在提升水资源管理与防洪减灾能力&#xff0c;实现水利管理的智能化与高效化。 2. 数字孪生技术 方案利用数字孪生技术构建流域数字模型&#xff0c;通过高精度模拟仿真&#xff0c;为水资源调度…

JSX 是react 专有的吗

JSX 并不是 React 专有的&#xff0c;尽管它最常用于 React。JSX&#xff08;JavaScript XML&#xff09;是一种 JavaScript 的语法扩展&#xff0c;允许在 JavaScript 中使用类似 HTML 的标签结构&#xff0c;便于描述用户界面。React 采用 JSX 来让开发者更加直观地定义组件的…

网络安全工程师要考什么证书

在当今数字化时代&#xff0c;网络安全已成为各行各业不可忽视的重要领域。随着网络攻击手段的不断升级&#xff0c;企业对网络安全人才的需求也日益迫切。网络安全工程师作为这一领域的专业人才&#xff0c;承担着保护企业信息安全、防范网络威胁的重要职责。那么&#xff0c;…

java xml 文本解析

示例文本 <Message><MessageName>time_request</MessageName><Timestamp>20220217165432906359</Timestamp><Body><EQPID>CMMAB01-DTP01</EQPID></Body> </Message>示例代码 import org.w3c.dom.Document; impo…

Python在数据科学中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 Python在数据科学中的应用 Python在数据科学中的应用 Python在数据科学中的应用 引言 Python 概述 定义与特点 发展历程 Python…

机器学习:决策树——ID3算法、C4.5算法、CART算法

决策树是一种常用于分类和回归问题的机器学习模型。它通过一系列的“决策”来对数据进行分类或预测。在决策树中&#xff0c;每个内部节点表示一个特征的测试&#xff0c;每个分支代表特征测试的结果&#xff0c;而每个叶节点则表示分类结果或回归值。 决策树工作原理 根节点&…

2024-11-12 问AI: [AI面试题] 您将如何设计一个人工智能系统来预测电信公司的客户流失?

文心一言 设计一个人工智能系统来预测电信公司的客户流失&#xff0c;是一个复杂但至关重要的任务&#xff0c;它涉及到多个步骤和关键要素。以下是一个详细的设计方案&#xff1a; 一、明确需求和目标 在设计智能系统之前&#xff0c;需要明确系统的需求和目标&#xff0c;…

大数据-221 离线数仓 - 数仓 数据集市 建模方法 数仓分层 ODS DW ADS

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…

odoo-040 odoo17前端的js方法调用后端py方法action报错

文章目录 问题描述梳理写法xml写法前端方法后端action的写法 错误解释 问题描述 在前端的kanban视图上添加了几个自定义按钮&#xff0c;按钮点击可以跳转到对应的tree视图&#xff0c;在写按钮调用方法的时候报错如下&#xff1a; 前端调用后端action报错&#xff1a; actio…

网络百问百答(一)

什么是链接&#xff1f; 链接是指两个设备之间的连接&#xff0c;它包括用于一个设备能够与另一个设备通信的电缆类型和协议。OSI参考模型的层次是什么&#xff1f; 有7个OSI层&#xff1a;物理层&#xff0c;数据链路层&#xff0c;网络层&#xff0c;传输层&#xff0c;会话层…

Vector Optimization – Stride

文章目录 Vector优化 – stride跳跃Vector优化 – stride跳跃 This distance between memory locations that separates the elements to be gathered into a single register is called the stride. A stride of one unit is called a unit-stride. This is equivalent to se…

Leetcode 每日一题 28.找出字符串中第一个匹配的下标

问题描述 给定两个字符串 haystack 和 needle&#xff0c;我们需要在 haystack 中找出 needle 字符串的第一个匹配项的下标。如果 needle 不是 haystack 的一部分&#xff0c;则返回 -1。 暴力搜索算法 暴力搜索算法是一种简单直观的字符串匹配方法。它的基本思想是&#xf…

aws中AcmClient.describeCertificate返回值中没有ResourceRecord

我有一个需求&#xff0c;就是让用户自己把自己的域名绑定我们的提供的AWS服务器。 AWS需要验证证书 上一篇文章中我用php的AcmClient中的requestCertificate方法申请到了证书。 $acmClient new AcmClient([region > us-east-1,version > 2015-12-08,credentials>[/…

C++20 概念与约束(2)—— 初识概念与约束

《C20 概念与约束&#xff08;1&#xff09;—— SFINAE》 ●《C20 概念与约束&#xff08;2&#xff09;—— 初识概念与约束》 《C20 概念与约束&#xff08;3&#xff09;—— 约束的进阶用法》 1、概念 C20 中引入新的编译期关键字 concept 用于创建概念。个人认为将其…

拦截器实现http请求访问本地图片

本文来记录下拦截器实现http请求访问本地图片 文章目录 概述代码实现本文小结 概述 如下图&#xff0c;本机(服务器)存储的图片想要在浏览器上通过Url地址访问&#xff1a; 浏览器直接访问 代码实现 烂机器实现文件真实地址和物理地址之间的映射 Slf4j Configuration public cl…

Python技巧:查询模块的版本号的方法

1,pycharm里面的 Python interpreter 或者 Python package 2&#xff0c;通过 __version_info__ import matplotlib print(matplotlib.__version_info__) 3&#xff0c;查看目录里面的 _version.py 文件

C语言串讲-3之函数和数组

1&#xff0e;函数名是一个指针&#xff0c;保存函数地址入口。函数名是函数的入口地址。函数的入口地址称为函数指针。 2&#xff0e;传参--本质是创建副本 &#xff08;1&#xff09;实参与形参 &#xff08;2&#xff09;值传递&#xff0c;指针传递&#xff0c;引用传递 …

【Java多线程】单例模式(饿汉模式和懒汉模式)

目录 单例模式的定义&#xff1a; 饿汉式--单例模式 定义&#xff1a; 案例&#xff1a; 优缺点&#xff1a; 懒汉式--单例模式&#xff1a; 定义&#xff1a; 1&#xff09;懒汉式单例模式&#xff08;非线程安全&#xff09; 2&#xff09;线程安全的懒汉式单例模…

计算机网络——HTTP篇

基础篇 IOS七层网络模型 TCP/IP四层模型&#xff1f; 应⽤层&#xff1a;位于传输层之上&#xff0c;主要提供两个终端设备上的应⽤程序之间的通信&#xff0c;它定义了信息交换的格式&#xff0c;消息会交给下⼀层传输层来传输。 传输层的主要任务就是负责向两台设备进程之间…