记录一次mmpretrain训练数据并转onnx推理

目录

1.前言

2.代码

3.数据形态【分类用】

4.配置文件

5.训练

6.测试-分析-混淆矩阵等等,测试图片效果等

7.导出onnx

8.onnx推理

9.docker环境简单补充


1.前言

        好久没有做图像分类了,于是想用商汤的mmclassification快速搞一波,发现已经没有了。现在是mmpretrain集成。

2.代码

        截止到我写文章,我是下载的GITHUB中的mmpretrain,我是main分支,是1.2版本。https://github.com/open-mmlab/mmpretrainicon-default.png?t=O83Ahttps://github.com/open-mmlab/mmpretrain     安装环境:

     (1)跟着文档来就好

 1.2依赖环境 — MMPretrain 1.2.0 文档icon-default.png?t=O83Ahttps://mmpretrain.readthedocs.io/zh-cn/latest/get_started.html        主要是这两步: cd mmpretrain    -->  pip install -U openmim && mim install -e .

        open-mmlab喜欢用mim来装东西,又快,又对。包括mmcv、mmdeploy、mmdet等。

    (2)自己搞一个docker,我文章最后做补充文档~

3.数据形态【分类用】

 可以看出,data下是训练集和验证集,然后是类名,类名下是各自图片,就这样就行了。

4.配置文件

代码里有个config文件,下面的resnet下面的,resnet50_8xb32_in1k.py抄一个过来做自己的,它里边还有如下一些配置文件:

依次把所有内容抄过来,做一个自己的配置文件。我放在config_me下边,叫my_resnet50_8xb32_in1k.py,最终内容如下边代码:

这里有两点需要注意,一个是去模型库下载预训练权重【读readme找模型库,对应配置文件下载的对应预训练pth】,第二个是dataset_type = 'CustomDataset'这里用自定义就行了,数据形态上边那样就行,不用、不用去改dateset下的imagenet、 coco啥的标签......


CLASS_NUMS = 8  # 你要分类的数量,比如我是8类
BATCH_SIZE = 20
TRAIN_NUM_WORKERS = 8
VAL_NUM_WORKERS = 4
TR_DATA_ROOT = "/xx/data/train"  # 训练集
VAL_DATA_ROOT = "/xx/data/val"  # 验证集
MAX_EPOCH = 600
MultiStepLR_list = [100, 200, 300]  # 学习率递减epoch分批
VAL_INTERVAL = 20  # 多少迭代验证一次
SAVE_INTERVAL = 50  # 多少迭代保存一次模型
LOG_INTERVAL = 100  # 多少迭代/批次打印一次
PRE_CHECKPOINT = "/configs_me/resnet50_8xb32_in1k_20210831-ea4938fc.pth"  # 去模型库下载与config文件相对应的预训练模型权重frozen_stagesss = 2  # -1不冻结层,这里选择冻结骨干2层# model settings
model = dict(type='ImageClassifier',backbone=dict(type='ResNet',depth=50,num_stages=4,out_indices=(3, ),frozen_stages=frozen_stagesss,     # 冻结主干网的层数style='pytorch'),neck=dict(type='GlobalAveragePooling'),head=dict(type='LinearClsHead',num_classes=CLASS_NUMS,in_channels=2048,  # load_from后就该2048  512报错# in_channels=512,loss=dict(type='CrossEntropyLoss', loss_weight=1.0),topk=(1, 5),  # 二分类啥的或者不用top5准确率的,用topk=(1, ),))# dataset settings
dataset_type = 'CustomDataset'
data_preprocessor = dict(num_classes=CLASS_NUMS,# RGB format normalization parametersmean=[123.675, 116.28, 103.53],std=[58.395, 57.12, 57.375],# convert image from BGR to RGBto_rgb=True,
)train_pipeline = [dict(type='LoadImageFromFile'),dict(type='RandomResizedCrop', scale=224),dict(type='RandomFlip', prob=0.5, direction='horizontal'),dict(type='PackInputs'),
]test_pipeline = [dict(type='LoadImageFromFile'),dict(type='ResizeEdge', scale=256, edge='short'),  # 缩放短边尺寸至 256pxdict(type='CenterCrop', crop_size=224),dict(type='PackInputs'),
]train_dataloader = dict(batch_size=BATCH_SIZE,num_workers=TRAIN_NUM_WORKERS,dataset=dict(type=dataset_type,data_root=TR_DATA_ROOT,# ann_file='meta/train.txt',# split='train',pipeline=train_pipeline),sampler=dict(type='DefaultSampler', shuffle=True),  # 默认采样# persistent_workers=True,  # 保持进程,缩短每个epoch准备时间
)val_dataloader = dict(batch_size=BATCH_SIZE,num_workers=VAL_NUM_WORKERS,dataset=dict(type=dataset_type,data_root=VAL_DATA_ROOT,# ann_file='meta/test.txt',# split='test',pipeline=test_pipeline),sampler=dict(type='DefaultSampler', shuffle=False),# persistent_workers=True,
)val_evaluator = dict(type='Accuracy', topk=(1, 5))  # 二分类不能用top1和top5
# val_evaluator = dict(type='Accuracy', topk=(1, ))# If you want standard test, please manually configure the test dataset
test_dataloader = val_dataloader
test_evaluator = val_evaluator# optimizer
optim_wrapper = dict(optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))# learning policy
param_scheduler = dict(type='MultiStepLR', by_epoch=True, milestones=MultiStepLR_list, gamma=0.5)# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=MAX_EPOCH, val_interval=VAL_INTERVAL)
val_cfg = dict()
test_cfg = dict()# NOTE: `auto_scale_lr` is for automatically scaling LR,
# based on the actual training batch size.
# auto_scale_lr = dict(base_batch_size=256)
# 通过默认策略自动缩放学习率,此策略适用于总批次大小 256
# 如果你使用不同的总批量大小,比如 512 并启用自动学习率缩放
# 我们将学习率扩大到 2 倍# defaults to use registries in mmpretrain
default_scope = 'mmpretrain'# configure default hooks
default_hooks = dict(# record the time of every iteration.timer=dict(type='IterTimerHook'),# print log every 100 iterations.logger=dict(type='LoggerHook', interval=LOG_INTERVAL),# enable the parameter scheduler.param_scheduler=dict(type='ParamSchedulerHook'),# save checkpoint per epoch.checkpoint=dict(type='CheckpointHook', interval=SAVE_INTERVAL),# set sampler seed in distributed evrionment.sampler_seed=dict(type='DistSamplerSeedHook'),# validation results visualization, set True to enable it.visualization=dict(type='VisualizationHook', enable=False),
)# configure environment
env_cfg = dict(# whether to enable cudnn benchmarkcudnn_benchmark=False,# set multi process parametersmp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),# set distributed parametersdist_cfg=dict(backend='nccl'),
)# set visualizer
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(type='UniversalVisualizer', vis_backends=vis_backends)# set log level
log_level = 'INFO'# load from which checkpoint
load_from = PRE_CHECKPOINT# whether to resume training from the loaded checkpoint
resume = False# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

5.训练

    把tools文件夹下边的train.py,复制一份【PS.后边都指的复制到项目根目录下】,只改动如下代码,然后python train.py就可以训练了。【注意训练结果权重在你的work-dir指定目录下】

parser.add_argument('--config', default="config_me/my_resnet50_8xb32_in1k.py", help='train config file path')
parser.add_argument('--work-dir', default="my_train_result", help='the dir to save logs and models')

6.测试-分析-混淆矩阵等等,测试图片效果等

   同理,把tools下的test.py复制,改动如下,可以评估验证集:

    parser.add_argument('--config', default="config_me/my_resnet50_8xb32_in1k.py", help='test config file path')parser.add_argument('--checkpoint', default="my_train_result/epoch_200.pth", help='checkpoint file')parser.add_argument('--work-dir', default="test_result", help='the directory to save the file containing evaluation metrics')# parser.add_argument('--out', default="test_result/res_epoch_20.pkl", help='the file to output results.')  # 这个是保存为pkl可以

同理, analyze_results.py复制一份出来,改动如下,可以分析模型对测试集的效果:

    parser.add_argument('--config', default=default="config_me/my_resnet50_8xb32_in1k.py", help='test config file path')parser.add_argument('--result', default="test_result/res_epoch_20.pkl", help='test result json/pkl file')parser.add_argument('--out-dir', default="test_result/analyze", help='dir to store output files')

同理, confusion_matrix.py复制一份出来,改动如下,可以计算验证集的混淆矩阵:

    parser.add_argument('--config',  default="config_me/my_resnet50_8xb32_in1k.py", help='test config file path')parser.add_argument('--ckpt_or_result',   default="my_train_result/epoch_200.pth",type=str,help='The checkpoint file (.pth) or ''dumpped predictions pickle file (.pkl).')
运行的时候,加上 --show 和--include-values等,显示带数字的混淆矩阵
同理,把demo下边的image_demo.py复制一份,改动如下,可以测试图片推理:
    parser.add_argument('--img', default="data/val/3.jpg", help='Image file')parser.add_argument('--model', default="configs_me/my_resnet50_8xb32_in1k.py", help='Model name or config file path')parser.add_argument('--checkpoint', default="xxx/epoch_400.pth", help='Checkpoint file path.')parser.add_argument('--show',action='store_true',help='Whether to show the prediction result in a window.')parser.add_argument('--show-dir',default="test_111111111111111",type=str,help='The directory to save the visualization image.')

7.导出onnx

这里用到mmdeploy, 把mmdeploy,git clone一个到本项目文件夹下,再cd到mmdeploy里,同样运行mim install -e .来安装mmdeploy或者参考:Get Started — mmdeploy 1.3.1 文档

 目前我这里是:1.3.1版本

导出onnx脚本:export_onnx.py

# === mmdeploy方式导出onnx ====================================
from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDKimg = '随便一张测试图路径 xxx/xx。jpg'
work_dir = '另存onnx的目录'
save_file = 'epoch_500.onnx'
deploy_cfg = 'mmdeploy/configs/mmpretrain/classification_onnxruntime_static.py'
model_cfg = 'configs_me/my_resnet50_8xb32_in1k.py' # 训练的配置文件
model_checkpoint = 'train_res_1024/epoch_500.pth'  # 训练的pth结果
device = 'cpu'# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)# 2. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)

8.onnx推理

(1)mmdeploy推理方式

import os# === 使用mmdeploy推理onnx ===============================
from mmdeploy.apis import inference_model# 类别顺序:混淆矩阵那里可以打印顺序
classes = ["class1", "class2", "class3"]
data_paths = 'data/1 (1).png'model_cfg = 'configs_me/my_resnet50_8xb32_in1k.py'
deploy_cfg = 'mmdeploy/configs/mmpretrain/classification_onnxruntime_static.py'
data_paths= 'xxx/1.jpg'
backend_files = ['xxx/rscd_c8_2w_epoch_500.onnx']  # 刚导出的
device = 'cpu'# for img in os.listdir(data_paths):
img_path = data_paths
result = inference_model(model_cfg, deploy_cfg, backend_files, img_path, device)
socres = result[0].pred_score.cpu().numpy().tolist()
labels = result[0].pred_label.cpu().numpy().tolist()label = labels[0]
score = socres[label]
print("图片名:", img_path, "预测类别:", classes[label], "预测分数:", round(score, 4))

(2)onnx-runtime推理方式, 脱离框架【very nice !!!!!!!!!】

         里边数据处理是参考 config文件里边图像,比如resize啥的要对。


import os
import onnxruntime
import cv2
import numpy as npdef resize_edge(image, scale=256, edge='short'):"""将图像的短边缩放到指定尺寸,保持宽高比不变"""h, w = image.shape[:2]if edge == 'short':if h < w:scale_ratio = scale / helse:scale_ratio = scale / welse:if h > w:scale_ratio = scale / helse:scale_ratio = scale / wnew_size = (int(w * scale_ratio), int(h * scale_ratio))resized_image = cv2.resize(image, new_size)return resized_imagedef center_crop(image, crop_size=224):"""从图像中心裁剪指定尺寸的区域"""h, w = image.shape[:2]center_x, center_y = w // 2, h // 2half_crop_size = crop_size // 2# 确定中心裁剪区域start_x = max(center_x - half_crop_size, 0)start_y = max(center_y - half_crop_size, 0)cropped_image = image[start_y:start_y + crop_size, start_x:start_x + crop_size]return cropped_imagedef pack_inputs(image):"""将图像转化为 3x224x224 格式并归一化"""# 调整通道顺序,变为3x224x224img_crop = image[:, :, ::-1].transpose(2, 0, 1).astype(np.float32)img_crop[0, :] = (img_crop[0, :] - 123.675) / 58.395img_crop[1, :] = (img_crop[1, :] - 116.28) / 57.12img_crop[2, :] = (img_crop[2, :] - 103.53) / 57.375return img_cropdef img_preprocess(image_path):"""图像预处理,以resnet50配置文件为例:test_pipeline = [dict(type='LoadImageFromFile'),dict(type='ResizeEdge', scale=256, edge='short'),  # 缩放短边尺寸至 256pxdict(type='CenterCrop', crop_size=224),dict(type='PackInputs'),]"""image = cv2.imread(image_path)resized_image = resize_edge(image, scale=256, edge='short')cropped_image = center_crop(resized_image, crop_size=224)final_image = pack_inputs(cropped_image)return final_imagedef img_infer(onnx_model, img_path):img_crop = img_preprocess(img_path)input = np.expand_dims(img_crop, axis=0)onnx_session = onnxruntime.InferenceSession(onnx_model, providers=['CPUExecutionProvider'])input_name = []for node in onnx_session.get_inputs():input_name.append(node.name)output_name = []for node in onnx_session.get_outputs():output_name.append(node.name)input_feed = {}for name in input_name:input_feed[name] = inputpred = onnx_session.run(None, input_feed)return pred  # 预测结果if __name__ == '__main__':onnx_model = "onnx_model/epoch_500.onnx"classes = ["class1", "class2", "class3"]  # 混淆矩阵和测试时候可以打印出来classes_explain = ["第一类", "第二类", "第三类"]# 一张图推理img_path = "data/1 (1).png"res = img_infer(onnx_model, img_path)print("图片名:", img_path, "预测类别:", classes_explain[np.argmax(res)], "预测分数:", round(np.max(res), 4))

9.docker环境简单补充

- dockerFile如下: 从阿里源拉一个torch的基础镜像.........

# https://www.modelscope.cn/docs/环境安装 # GPU环境镜像(python3.10)

FROM registry.cn-beijing.aliyuncs.com/modelscope-repo/modelscope:ubuntu22.04-cuda12.1.0-py310-torch2.3.0-tf2.16.1-1.15.0

# FROM registry.cn-hangzhou.aliyuncs.com/modelscope-repo/modelscope:ubuntu22.04-cuda12.1.0-py310-torch2.3.0-tf2.16.1-1.15.0

# FROM registry.us-west-1.aliyuncs.com/modelscope-repo/modelscope:ubuntu22.04-cuda12.1.0-py310-torch2.3.0-tf2.16.1-1.15.0

RUN mkdir /opt/code

WORKDIR /opt/code

- 构建镜像 docker build -t hezy_base_image .

- 创建容器 docker run --name  hezy_mmcls  -d  -p 9528:22  --shm-size=1g  hezy_base_image   tail -f /dev/null

【-d 表示后台, -p表示端口映射 --shm-size 表示共享内存分配  tail -f /dev/null表示啥也不干】

- docker run还有些参数,可以酌情添加。

- docker exec -it 容器id /bin/bash: 命令可以进到容器

- docker images, docker ps | grep hezy: 查看镜像和容器等等

针对本次mmpretrain环境里边继续操作:

- 容器里边删除所有关于mm的环境【重装】,包括mmcls、openmim、mmdet、mmseg、mmpretrain等;

- 安装mmpretrain:https://mmpretrain.readthedocs.io/zh-cn/latest/get_started.html

- 验证:python demo/image_demo.py demo/demo.JPEG resnet18_8xb32_in1k --device cpu

- 补充:映射ssh等以及如下:

vim /etc/ssh/sshd_config  下边这些设置放开:

Port 22

AddressFamily any

ListenAddress 0.0.0.0

PermitRootLogin yes

PermitEmptyPasswords yes

PasswordAuthentication  yes

#重启ssh

service ssh restart

# 设置root密码:passwd root

外边就root/root和IP:端口登录了。【其他shel或者pycharm等idea登录用】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/883805.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【微服务】Nacos 注册中心

<!-- nacos 依赖--><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-alibaba-dependencies</artifactId><version>${nacos.version}</version><type>pom</type><scope>import&l…

太速科技-430-基于RFSOC的8路5G ADC和8路10G的DAC PCIe卡

430-基于RFSOC的8路5G ADC和8路10G的DAC PCIe卡 一、板卡概述 板卡使用Xilinx的第三代RFSOC系列&#xff0c;单颗芯片包含8路ADC和DAC&#xff0c;64-bit Cortex A53系列4核CPU&#xff0c;Cortex-R5F实时处理核&#xff0c;以及大容量FPGA。 对主机接口采用PCIe Gen3x…

大文件秒传,分片上传,断点续传

大文件分片上传 一 功能描述 1.文件通过web端分片多线程上传到服务端&#xff0c;然后web端发起分片合并&#xff0c;完成大文件分片上传功能 2.上传过的大文件&#xff0c;实现秒传 3.上传过程中&#xff0c;服务异常退出&#xff0c;实现断点续传 二 流程图 三 代码运行…

数据库数据恢复—Oracle ASM磁盘组掉线 ,ASM实例无法挂载的数据恢复案例

Oracle数据库数据恢复环境&故障&#xff1a; Oracle ASM磁盘组由4块磁盘组成。Oracle ASM磁盘组掉线 &#xff0c;ASM实例不能mount。 Oracle数据库故障分析&恢复方案&#xff1a; 数据库数据恢复工程师对组成ASM磁盘组的磁盘进行分析。对ASM元数据进行分析发现ASM存储…

【HarmonyOS】判断应用是否已安装

【HarmonyOS】判断应用是否已安装 前言 在鸿蒙中判断应用是否已安全&#xff0c;只是通过包名是无法判断应用安装与否。在鸿蒙里新增了一种判断应用安装的工具方法&#xff0c;即&#xff1a;canOpenLink。 使用该工具函数的前提是&#xff0c;本应用配置了查询标签querySch…

深度学习Pytorch-Tensor的属性、算术运算

深度学习Pytorch-Tensor的属性、算术运算 Tensor的属性Tensor的算术运算Pytorch中的in-place操作Pytorch中的广播机制Tensor的取整/取余运算Tensor的比较运算Tensor的取前k个大/前k小/第k小的数值及其索引Tensor判定是否为finite/inf/nan Tensor的属性 每一个Tensor对象都有以…

vue 果蔬识别系统百度AI识别vue+springboot java开发、elementui+ echarts+ vant开发

编号&#xff1a;R03-果蔬识别系统 简介&#xff1a;vuespringboot百度AI实现的果蔬识别系统 版本&#xff1a;2025版 视频介绍&#xff1a; vuespringboot百度AI实现的果蔬识别系统前后端java开发&#xff0c;百度识别&#xff0c;带H5移动端&#xff0c;mysql数据库可视化 1 …

Python(pandas库3)

函数 随机抽样 语法&#xff1a; n&#xff1a;要抽取的行数 frac&#xff1a;抽取的比例&#xff0c;比如 frac0.5&#xff0c;代表抽取总体数据的50% axis&#xff1a;示在哪个方向上抽取数据(axis1 表示列/axis0 表示行) 案例&#xff1a; 输出结果都为随机抽取。 空…

Qt/C++ 调用迅雷开放下载引擎(ThunderOpenSDK)下载数据资源

目录导读 前言ThunderOpenSDK 简介参考 xiaomi_Thunder_Cloud 示例ThunderOpenSDK 下载问题 前言 在对以前老版本的exe执行程序进行研究学习的时候&#xff0c;发现以前的软件是使用的ThunderOpenSDK这个迅雷开放下载引擎进行的项目数据下载&#xff0c;于是在网上搜索一番找到…

Flutter Row组件实战案例

In this section, we’ll continue our exploration by combining the Row and Container widgets to create more complex layouts. Let’s dive in! 在本节中&#xff0c;我们将继续探索&#xff0c;结合“Row”和“Container”小部件来创建更复杂的布局。让我们开始吧! Sc…

已解决Navicat 选择Mysql表 报错unkonow internal error: Access violation - no RTTI data

已解决Navicat 选择Mysql表 报错unkonow internal error&#xff1a; Access violation - no RTTI data 报错信息截图&#xff1a; 使用Navicat Premium15 选择sql server表时 出现大量弹窗报错&#xff0c;导致sql文件执行不了&#xff0c;右键数据库执行外部文件也失败了。弹…

Python日志系统详解:Logging模块最佳实践

Python日志系统详解&#xff1a;Logging模块最佳实践 在开发Python应用程序时&#xff0c;日志记录是排查问题、监控系统状态、优化性能的重要手段。Python标准库中提供了强大的logging模块&#xff0c;使开发者可以轻松实现灵活的日志系统。本文将详细介绍Python的logging模块…

Kubernetes:(二)K8Sv1.20二进制部署

文章目录 一、k8s项目架构二、二进制搭建 Kubernetes v1.20 &#xff08;单master节点&#xff09;1.操作系统初始化配置2.部署 docker引擎3. etcd的概念4. 证书认证5. node01 节点操作&#xff08;192.168.44.10&#xff09;6. node02 节点操作&#xff08;192.168.44.40&…

arcgis pro 3.3.1安装教程

一、获取方式&#xff1a; http://dt4.8tupian.net/2/29913a61b1500.pg3二、软件目录&#xff1a; 三、安装步骤&#xff1a; &#xff08;1&#xff09;安装软件运行环境windowsdesktop-runtime 8.0.4; &#xff08;2&#xff09;选中安装文件arcgispro_33zh_cn_190127.exe&…

nfs作业

服务机 配置文件内容 客户机

QT实时显示日志内容

性能有待提高&#xff1b; 能够读取指定目录下的日志文件&#xff0c;显示在下拉框中。 选择某一个日志之后&#xff0c;点击获取数据按钮&#xff0c;能够实时刷新日志内容。 但是每次刷新都会对整个文件进行读取&#xff0c;文本框重新加载文本。效率很低&#xff0c;影响性能…

基于yolov8的布匹缺陷检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】

更多目标检测和图像分类识别项目可看我主页其他文章 功能演示&#xff1a; 基于yolov8的布匹缺陷检测系统&#xff0c;支持图像、视频和摄像实时检测【pytorch框架、python源码】_哔哩哔哩_bilibili &#xff08;一&#xff09;简介 基于yolov8的布匹缺陷检测系统是在 PyTo…

着色器的认识

知识了解&#xff1a; 着色器&#xff1a; 顶点着色器: 用来描述顶点的特性,如位置、颜色等&#xff0c;其中&#xff0c;顶点&#xff1a;是指二维或三维空间中的一个点比如交点或者端点。 片元着色器&#xff1a;用来进行逐片元处理操作&#xff0c;比如光照、颜色叠加等&…

从零搭建开源陪诊系统:关键技术栈与架构设计

构建一个开源陪诊系统是一个涉及多种技术的复杂工程。为了让这个系统具备高效、可靠和可扩展的特点&#xff0c;我们需要从架构设计、技术栈选择到代码实现等方面进行全面的考量。本文将从零开始&#xff0c;详细介绍搭建开源陪诊系统的关键技术栈和架构设计&#xff0c;并提供…

react-signature-canvas 实现画笔与橡皮擦功能

react-signature-canvas git 地址 代码示例 import React, { Component } from react import { createRoot } from react-dom/clientimport SignaturePad from ../../src/index.tsximport * as styles from ./styles.module.cssclass App extends Component {state { trimmed…