tensorflow入门案例手写数字识别人工智能界的helloworld项目落地1

参考
https://tensorflow.google.cn/?hl=zh-cn
https://tensorflow.google.cn/tutorials/keras/classification?hl=zh-cn
项目资源
https://download.csdn.net/download/AnalogElectronic/89872174

文章目录

  • 一、案例学习
    • 1、导入测试和训练数据集,定义模型,编译模型,模型训练,模型评估
    • 2、模型经过训练后,您可以使用它对一些图像进行预测。附加一个 Softmax 层,将模型的线性输出 logits 转换成更容易理解的概率。
    • 3、绘图显示某一张测试图片
    • 4、Windows上画图工具手写数字图片保存到本地文件夹,像素也是28*28
    • 5、使用模型预测手写图片
  • 二、项目落地
    • 1、在IDEA工具Pycharm中运行如下代码
    • 2、运行日志如下
    • 3、使用postman调用接口

一、案例学习

1、导入测试和训练数据集,定义模型,编译模型,模型训练,模型评估

数据集市28*28单通道灰度图像

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
mnist = tf.keras.datasets.mnist(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)),tf.keras.layers.Dense(128, activation='relu'),tf.keras.layers.Dropout(0.2),tf.keras.layers.Dense(10, activation='softmax')
])model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

在这里插入图片描述

2、模型经过训练后,您可以使用它对一些图像进行预测。附加一个 Softmax 层,将模型的线性输出 logits 转换成更容易理解的概率。

probability_model = tf.keras.Sequential([model,tf.keras.layers.Softmax()
])#保存模型
probability_model.save('./mnist.model.keras')#测试前五张图片的测试概率
probability_model(x_test[:5])

预测结果是一个包含 10 个数字的数组。它们代表模型对 10 种不同服装中每种服装的“置信度”。您可以看到哪个标签的置信度值最大:
在这里插入图片描述

3、绘图显示某一张测试图片

import numpy as np
import matplotlib.pyplot as plt
plt.figure()
plt.imshow(x_test[1])
plt.colorbar()
plt.grid(False)
plt.show()

在这里插入图片描述

4、Windows上画图工具手写数字图片保存到本地文件夹,像素也是28*28

在这里插入图片描述

5、使用模型预测手写图片

from tensorflow.keras.preprocessing.image import img_to_array, load_img
img_path = './img/7.png'
img = load_img(img_path, target_size=(28, 28), color_mode='grayscale')
img = img_to_array(img) # 灰度化
img = img.reshape(1,28,28)
img = 255-img
predictions  = probability_model(img)
np.argmax(predictions[0])

在这里插入图片描述

测试多次屡试不爽都是对应数字

二、项目落地

使用python搭建一个web项目,项目中加载保存的模型,预测用户上传的图片,通过接口上传图片返回图片对应的数字

1、在IDEA工具Pycharm中运行如下代码

from flask import Flask, request
from PIL import Image
import numpy as np
from werkzeug.utils import secure_filename
from tensorflow import kerasmodel = keras.models.load_model('./mnist.model.keras')app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = './path/to/the/uploads'  # 替换为你的上传文件夹路径@app.route('/')
def hello_world():return '欢迎来到我的Python Web程序!'@app.route('/upload', methods=['POST'])
def upload_image():if 'file' not in request.files:return 'No file part'file = request.files['file']if file.filename == '':return 'No selected file'if file:  # 这里可以加文件类型判断逻辑filename = secure_filename(file.filename)# file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))img = Image.open(file.stream)channels = len(img.getbands())print('图像通道数为', channels)img = img.convert("L")  # 转换为灰度# img = img.convert("RGB")  # 转换为3通道img_matrix = np.asarray(img)img_matrix = 255 - img_matriximg_matrix = img_matrix.reshape(1, 28, 28)predictions = model.predict(img_matrix)result = np.argmax(predictions[0])return 'File uploaded successfully filename='+filename + 'predict result='+str(result)if __name__ == '__main__':app.run(debug=True)

2、运行日志如下

2024-10-10 18:45:12.611150: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-10-10 18:45:13.735215: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-10-10 18:45:16.360099: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.* Serving Flask app 'webtest01'* Debug mode: on
WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.* Running on http://127.0.0.1:5000
Press CTRL+C to quit* Restarting with stat
2024-10-10 18:45:17.159241: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-10-10 18:45:18.305527: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-10-10 18:45:21.072051: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.* Debugger is active!* Debugger PIN: 459-068-596
图像通道数为 4
127.0.0.1 - - [10/Oct/2024 18:45:21] "POST /upload HTTP/1.1" 200 -
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 57ms/step

3、使用postman调用接口

在这里插入图片描述
在这里插入图片描述
后话,发现一个现象,如果绘图手写数字不在正中间占满图片,而是偏离正中间,或者写的特别小就识别不出来了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/882038.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【R语言】随机森林+相关性热图组合图

数据概况文末有获取方式 随机森林部分 #调用R包 library(randomForest) library(rfPermute) library(ggplot2) library(psych) library(reshape2) library(patchwork) library(reshape2) library(RColorBrewer) ​ ​ #读取数据 df<-read.csv("F:\\EXCEL-元数据\\2020…

深度学习之残差网络ResNet

文章目录 1. 残差网络定义2. 数学基础函数类3. 残差块4.ResNet模型5.训练模型6.小结 1. 残差网络定义 随着我们设计的网络越来越深&#xff0c;深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。更重要的是设计网络的能力。在这种网络中&#xff0c;添加层会使得网…

2010年国赛高教杯数学建模A题储油罐的变位识别与罐容表标定解题全过程文档及程序

2010年国赛高教杯数学建模 A题 储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐&#xff0c;并且一般都有与之配套的“油位计量管理系统”&#xff0c;采用流量计和油位计来测量进/出油量与罐内油位高度等数据&#xff0c;通过预先标定的罐容表&#…

JDBC的学习

一、JDBC DriverManager 二、JDBC connection 三、 JDBC Statement 1.DML 2.DDL 四、JDBC ResultSet 五、JDBC PreparedStatement

30.第二阶段x86游戏实战2-遍历周围-C++遍历二叉树(玩家角色基址)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 本次游戏没法给 内容参考于&#xff1a;微尘网络安全 本人写的内容纯属胡编乱造&#xff0c;全都是合成造假&#xff0c;仅仅只是为了娱乐&#xff0c;请不要…

Prometheus运维监控平台之监控指标注册到consul脚本开发、自定义监控项采集配置调试(三)

系列文章目录 运维监控平台搭建 运维监控平台监控标签 golang_Consul代码实现Prometheus监控目标的注册以及动态发现与配置V1版本 文章目录 系列文章目录目的一、监控指标注册到consul的golang脚本开发1、修改settings.yaml文件2、修改config/ocnsul,go文件3、修改core/consul…

让你的MacOS剪切板变得更加强大,如何解决复制内容覆盖的问题

MacOS的日常使用过程中&#xff0c;肯定少不了复制粘贴&#xff0c;不论是文本内容还是文件&#xff0c;复制粘贴是避不开的操作&#xff0c;如果需要复制粘贴的内容不多&#xff0c;那么普通的复制粘贴就可以完成了&#xff0c;但是当有同样的内容需要输入不同的地方的时候&am…

C++的魔法世界:类和对象的终章

文章目录 一、再探构造函数二、类型转换2.1隐式类型转换2.2内置类型的类型转化2.3explicit关键字2.4多参数构造 三、static成员四、友元五、内部类内部类的特性 六、匿名对象 一、再探构造函数 类和对象(中)里介绍的构造函数&#xff0c;使用的是赋值实现成员变量的初始化。而…

出现接地故障电流现象,安科瑞ASJ剩余电流继电器可以避免吗?

什么是ASJ剩余电流继电器 剩余电流继电器是检测剩余电流&#xff0c;并将剩余电流值与基准值相比较的电器。当剩余电流值超过基准值时&#xff0c;它会发出一个机械开闭信号&#xff0c;使机械开关电器脱扣或声光报警装置发出报警。这种继电器通常基于漏电保护原理工作&#x…

【QAMISRA】解决导入commands.json时报错问题

【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 解决导入commands.json时报错“Could not obtain system-wide includes and defines”的问题。 2、 问题场景 客户导入commands.json时报错“Could not obtain system-wide includes and defines”。 3、软硬件环境…

【保姆级教程】DolphinScheduler本地部署与远程访问详细步骤解析

文章目录 前言1. 安装部署DolphinScheduler1.1 启动服务 2. 登录DolphinScheduler界面3. 安装内网穿透工具4. 配置Dolphin Scheduler公网地址5. 固定DolphinScheduler公网地址 前言 本篇教程和大家分享一下DolphinScheduler的安装部署及如何实现公网远程访问&#xff0c;结合内…

海思hi3536c配置内核支持USB摄像头

linux内核版本&#xff1a;linux-3.18.20 配置步骤 进入Device Drivers 选择Multimedia support&#xff0c;并进入 选择Media USB Adapters&#xff0c;并进入 如下图&#xff0c;选择这几项&#xff1a; 保存退出&#xff0c;重新编译内核下载 内核更新后&#xff0c…

家里有宠物想去异味,希喂、米家、范罗士宠物空气净化器哪款去异味好?

宠物的便臭和体臭&#xff0c;其臭味浓度和持续性&#xff0c;相比于正常家居的其他臭味&#xff0c;祛除难度更大&#xff0c;建议就是选使用真正能高效除臭、分解异味分子的化学分解法除臭的宠物空气净化器。比如&#xff1a;光触媒分解除臭的。 不踩坑前置推荐 我从2020年…

docker-compose 部属netcore

一、准备镜像 编写&#xff1a;dockercompose.yml version: "3.4"services: saas.demo.api: image: harbor.net.com/demos/saas.demo.api:latestcontainer_name: saas.demo.apienvironment:- ASPNETCORE_ENVIRONMENTProductionports: - "5001:80" 部属&am…

CTFHUB技能树之HTTP协议——响应包源代码

开启靶场&#xff0c;打开链接&#xff1a; 是个贪吃蛇小游戏&#xff0c;看不出来有什么特别的地方 用burp抓包看看情况&#xff1a; 嗯&#xff1f;点击“开始”没有抓取到报文&#xff0c;先看看网页源代码是什么情况 居然直接给出flag了&#xff0c;不知道这题的意义何在 …

UE4 材质学习笔记06(布料着色器/体积冰着色器)

一.布料着色器 要编写一个着色器首先是看一些参考图片&#xff0c;我们需要找出一些布料特有的特征&#xff0c;下面是一个棉织物&#xff0c;可以看到布料边缘的纤维可以捕捉光线使得边缘看起来更亮 下面是缎子和丝绸的图片&#xff0c;与棉织物有几乎相反的效果&#xff0c;…

Docker 容器 数据卷 使用

目录 常用 命令 什么是数据卷以及特点 如何挂载数据卷 数据卷容器 数据覆盖问题 修改已经建立的数据卷关系 博主wx&#xff1a;yuanlai45_csdn 博主qq&#xff1a;2777137742 想要 深入学习 5GC IMS 等通信知识(加入 51学通信)&#xff0c;或者想要 cpp 方向修改简历&…

Linux——用户/用户组

创建用户组groupadd groupadd 用户组 删除用户组groupdel groupdel 用户组 创建用户useradd useradd 用户名 - g 用户组 useradd 用户名 -d HOME路径 删除用户userdel userdel 用户 userdel -r 用户 &#xff08;删除用户的 HOME 目录&#xff0c;不使用 -r &#xff0…

java项目之纺织品企业财务管理系统源码(springboot+vue+mysql)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的纺织品企业财务管理系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 基于spring boot…

西门子网络程序传输,无需开通网络驱动器直接接入底层,支持各类数控 如发那科、三菱 、新代、海德汉、广数、精雕、马扎克等等

有关西门子的程序传输问题&#xff0c;大家一般是通过文件共享、ftp、网络驱动器等方式&#xff0c;其中828D还需要授权开通网络启动器 下面介绍一种方式直接进入西门子Linux底层系统实现和NCK的文件交互功能 软件截图如下 功能表如下 机床程序上载至电脑 电脑程序下传…