【贪心算法】贪心算法

贪心算法简介

  • 1.什么是贪心算法
  • 2.贪心算法的特点
  • 3.学习贪心的方向

在这里插入图片描述

点赞👍👍收藏🌟🌟关注💖💖
你的支持是对我最大的鼓励,我们一起努力吧!😃😃

1.什么是贪心算法

与其说是贪心算法,不如说是贪心策略。

贪心策略:解决问题的策略( 局部最优 —> 全局最优)。

  1. 把解决问题的过程分为若干步;
  2. 解决每一步的时候,都选择当前看起来 “最优的” 解法;
  3. “希望” 得到全局最优解。

接下来我们举三个例子重点突然我们的贪心策略。

例一:找零问题

假设顾客拿着50块钱去买一瓶4块钱的饮料,你需要找顾客46块钱。此时你只有面额20元、10元、5元、1元 若干个纸币。我们要的是用最少的张数完成找零。

我给你找46块钱肯定是一张一张给你凑成46块钱。解决问题的时候整个问题就分为若干步,若干步就是一张一张的给你找。然后解决每一步的时候都选择当前看起来 “最优的” 解法。

当开始凑46块钱的时候,刚开始肯定不会拿最小的1块钱,我想的是最少的张数,那应该是最快的凑够46块钱。所以第一次肯定选择20块。接下来在凑26块钱,然后凑26块钱,我依旧选择当前看起来最优的还是20块钱。接下来凑6块钱,20和10就不要考虑了,然后选5块钱,接下来在选1块钱,最后正好可以凑够46块钱。

在这里插入图片描述

回顾找零过程非常符合贪心策略,每次找钱都选择当前能选择的最大面额,选择u最大面额就能用最少的张数凑成46块钱。

例二:最小路径和

我们在动态规划遇到这道题。我想从左上角到达右下角,然后每次走只能向下走或者向右走。每个格子都是路径,问从左上角达到右下角最小路径和是多少?

在这里插入图片描述

这里已经把问题拆分若干个了,从起点一步一步走就是。每一步走的时候都选择当前看起来 “最优的” 解法。从左上角开始走最终走到右下角贪心路径和是10 。

在这里插入图片描述

但是可能会有个异或,这个10好像不对,我们直接观察最小的路径和是7。现在先不管正确解法是什么,我们先搞懂什么是贪心策略。

例三:背包问题

物品编号从1~3,每个物品都有体积和价值。此时你手里还有一个最大容量为8的背包。每个物品都有无穷多个。然后问从这些物品种挑选一些物品放背包里,你所挑选东西的最大价值是多少?

在这里插入图片描述

这道题限制条件有点多,所以此时我们可能会有非常多的贪心策略。

比如只考虑体积这个限制条件,往背包装的话,肯定会选择体积最小的往背包里装,因为装的多价值可能更大。那只考虑体积的贪心策略的最大价值是8

在这里插入图片描述

还有只考虑价值,不是让价值最大吗,那就疯狂装价值最大的,但是因为背包容量的限制,只能装一个价值为10的1号物品。然后去装价值为7的2号物品,但是背包装不下,所以接下来考虑价值为1的3号物品。在这种贪心策略下的最大价值是13

在这里插入图片描述

甚至还可以考虑单位体积价值,因为2最大但是因为容量的限制只能装一个1号物品,然后考虑1.75但是装不下,然后就考虑3号物品,你会发现这个策略和只考虑价值的策略是一样的。

在这里插入图片描述

虽然上面想了三种贪心策略,但是细心发现这三种策略都错,因为如果最大容量是8的话,那装两个2号物品的最大价值是14,比上面的都大。

虽然最后两个例子贪心并没有解决问题,但是希望已经搞懂什么是贪心策略,就是 贪婪 + 鼠目寸光!说白了只考虑眼前的最优解并不考虑全局的最优解,然后通过眼前的最优解,“希望” 得到全局最优解。但是你会发现鼠目寸光并不一定能得到最后的结果。但是例子又是正确的,为什么正确?待会我们证明一下。

2.贪心算法的特点

1.贪心策略的提出

  1. 贪心策略的提出是没有标准以及模板的
  2. 可能每一道题的贪心策略都是不同的

2.贪心策略的正确性

因为有可能 “贪心策略” 是一个错误的方法,正确的贪心策略,我们是需要 “证明的”。

想证明一个贪心策略是错的还是挺简单的,举一个反例就行了。就比如例二 更短的路径和是7,例三 选择两个2号物品价值是最大的。这样就把之前的贪心策略全部都给推翻了。所以想说一个贪心策略是错的还是挺简单的。但是例一 找零问题每次都去选可选的面额最大的就能用最少的张数凑成46块钱,如何证明它是对的呢?

不能说凭感觉,此时看这样一个例子,比如还是凑46,但是现在你的面额是 [20、18、10、5、1],如果依旧按照贪心策略,你会选择两张20元的、一张5元的、一张1元的。但是由于此时有18块钱,我可以选两张18元的,再选一个10元的,才三张就能凑46元。然后你刚刚的贪心就不对了。所以不能说凭感觉,一定要有严格的证明。

常用的证明方法:数学中见过的所有证明方法。

证明:找零问题
[20、10、5、1]

我们先不管策略以及最优解是什么,我们先证明一个性质

假设最优解用了20块钱A张、10块钱B张、5块钱C张、1块钱D张,此时我们先证明一个性质B、C、D是有取值范围的。

先考虑B,B的取值范围有三种:B > 2, B = 2,B < 2
为什么考虑2,因为2张10可以凑成一张20。所以就把B分为>2,=2,<2,三种情况考虑。

在这里插入图片描述

我们很好证明前两种情况不是B的最优解,如果想用10,B用的数目超过2张,那么任意两种10都可以用一张20替换,那用20来代替10绝对是比刚刚用两种10块更优的。所以B绝对不可能超过2。

在这里插入图片描述
同理B=2也是不可能存在的,原因和上面一样,如果B用了两种10块的,那直接用一张20的替换不是更优的。

在这里插入图片描述

由此可以得到一个性质,在最优解中,B的张数绝对是小于2的或者可以说的小于等于1。在最优解中B最多就是一张,要么没有。

在这里插入图片描述

同理C是和B一样的,要么C > 2、C = 2、C < 2,最终在最优解中,C的数目最多1张,要么没有。

在这里插入图片描述

同理D,因为5张D才可以凑出来一张C,D还是分三种情况:D > 5、D = 5、D < 5,
同理前面两种是不存在的,D超过5张不如用一张C,D等于5张也是不如用一张C,所以D < 5 或者 D 小于等于 4

在这里插入图片描述

这是我们证明之前得到的性质,10块钱不超过1张,5块钱不超过1张,1块钱不超过4张。

接下来我们证明方法就是等效法。
设贪心策略最后用的张数是 [a、b、c、d],最优解 [A、B、C、D]。
接下来我们只要证明出来 a = A,b = B,c = C,d = D。那我们就可以说我们贪心就是最优解。

先证明第一个a,回忆一下我们的贪心[a、b、c、d]怎么来的,我们的贪心策略是能用a就用a,直到a不能用了,在用b。所以用这个贪心策略可以得到 a >= A,绝对不可能是 a < A,如果小了就不是贪心策略,因为我们贪心策略就是能用20就尽量用20,所以a >= A。
在这里插入图片描述

然后我们还可以证明 a 不可能大于 A,如果 a > A,说明A比较小,别忘了整个钱数是不变的,如果A比较小,那么少的20块钱就会让B、C、D去凑,你会发现根本凑不出来,注意刚才的性质10块钱不超过1张,5块钱不超过1张,1块钱不超过4张,所能凑出来最大的钱是10 + 5 + 4 = 19,根本凑不出20。如果 a 不能大于 A。

因此得到一个结论: a = A

在这里插入图片描述

当 a = A,那 b c d 和 B C D 所凑的钱是一样的。 当凑的钱是一样的时候, 我们可以得到 b >= B,因为贪心我们会尽可能的选择10块钱,此时 b >= B ,同理我们也可以证明 b 不可能大于 B,原因和之前的一样,如果B小的话,它会让C和D凑10块钱,但是C和D凑不出来10块钱,C最多一张5块钱,D最多四张1块钱,5 + 4 = 9 最多凑9块钱,根本凑不出10块钱,所以 b 不可能大于 B。

因此 b = B

在这里插入图片描述

同理 c = C ,那 d 自然等于 D。

在这里插入图片描述

我们严格证明出来贪心策略和最优解是一致的,因此贪心策略得到的结果绝对是最优解。

3.学习贪心的方向

遇到不会的贪心题,很正常,把心态放平。

  1. 前期学习的时候,把重点放在贪心的策略上,把这个策略当成经验吸收。往后遇到相同类型的题目时可以用经验去解决这道问题。

  2. 当知道贪心是正确的时候,要想到如何去证明。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879591.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring为什么要用三级缓存解决循环依赖?

Spring为什么要用三级缓存解决循环依赖&#xff1f; 1. Spring是如何创建一个bean对象2. Spring三级缓存2.1 一级缓存&#xff1a;单例池&#xff0c;经历过完整bean生命&#xff0c;单例Bean对象2.2 二级缓存&#xff1a;提前暴露的Bean2.3 三级缓存&#xff1a;打破循环 3. S…

计算机网络通关学习(一)

简介 之前我通过王道的考研课进行了计算机网络的学习&#xff0c;但是在秋招准备过程中发现之前的笔记很多不足&#xff0c;学习的知识不够深入和巩固&#xff0c;所以再重新对《图解HTTP》&《图解TCP/IP》进行深度学习后&#xff0c;总结出了此篇博客&#xff0c;由于内容…

08_Python数据类型_字典

Python的基础数据类型 数值类型&#xff1a;整数、浮点数、复数、布尔字符串容器类型&#xff1a;列表、元祖、字典、集合 字典 字典&#xff08;Dictionary&#xff09;是一种可变容器模型&#xff0c;它可以存储任意类型对象&#xff0c;其中每个对象都存储为一个键值对。…

存储数据的树形结构

目录 1、二叉查找树 2、平衡二叉树AVL Tree 3 、平衡多叉树B-Tree 4、BTree树 5 、红黑树 红黑树的应用 6.平衡树的旋转 mysql 索引数据结构&#xff1a; Btree 索引是B树在数据库中的一种实现&#xff0c;最为常见的。B树 中的B代表平衡&#xff0c;而不是二叉 1、二…

带你如何使用CICD持续集成与持续交付

目录 一、CICD是什么 1.1 持续集成&#xff08;Continuous Integration&#xff09; 1.2 持续部署&#xff08;Continuous Deployment&#xff09; 1.3 持续交付&#xff08;Continuous Delivery&#xff09; 二、git工具使用 2.1 git简介 2.2 git的工作流程 2.3 部署g…

如何用 Scrapy 爬取网站数据并在 Easysearch 中进行存储检索分析

做过数据分析和爬虫程序的小伙伴想必对 Scrapy 这个爬虫框架已经很熟悉了。今天给大家介绍下&#xff0c;如何基于 Scrapy 快速编写一个爬虫程序并利用 Easysearch 储存、检索、分析爬取的数据。我们以极限科技的官网 Blog 为数据源&#xff0c;做下实操演示。 安装 scrapy 使…

3. Python计算水仙花数

Python计算水仙花数 一、什么是水仙花数&#xff1f; 百度答案 二、怎样使用Python计算水仙花数&#xff1f; 这里需要for循环&#xff0c;if判断&#xff0c;需要range()函数&#xff0c;需要知道怎么求个位数&#xff0c;十位数&#xff0c;百位数… 1. For循环 语句结…

CTFHub技能树-SQL注入-整数型注入

一、手动注入 思路&#xff1a;注入点->库->表->列->数据 首先使用order by探测有几列 http://challenge-215beae2f0b99b12.sandbox.ctfhub.com:10800/?id1 order by 2 我们发现order by 2 的时候有回显&#xff0c;到了order by 3 的时候就没有回显了&#xf…

k8s的环境配置

一、前期系统环境准备 准备3台主机&#xff1a;硬盘50G cpu2个 内存2G 1、3台主机同时配置 1&#xff09;关闭防火墙与selinux、NetworkManager [rootk8s-master ~]# systemctl stop firewalld[rootk8s-master ~]# systemctl disable firewalldRemoved symlink /etc/systemd/…

CSS---序号使用css设置,counter-reset、counter-increment、content配合实现备注文案的序号展示

直接上代码&#xff0c;全代码copy即可使用! <template><div class"reminder"><span class"Bold_12_body" style"line-height: 8vw">温馨提示&#xff1a;</span><br /><div class"rule-container"…

【Hot100】LeetCode—84. 柱状图中最大的矩形

目录 1- 思路题目识别单调栈 2- 实现⭐84. 柱状图中最大的矩形——题解思路 3- ACM 实现 原题链接&#xff1a;84. 柱状图中最大的矩形 1- 思路 题目识别 识别1 &#xff1a;给定一个数组 heights &#xff0c;求解柱状图的最大面积 单调栈 使用 Stack 来实现&#xff0c;遍…

go语言中的数组指针和指针数组的区别详解

1.介绍 大家知道C语言之所以强大&#xff0c;就是因为c语言支持指针&#xff0c;而且权限特别大&#xff0c;c语言可以对计算机中任何内存的指针进行操作&#xff0c;这样自然而然也会带来一些不安全的因素&#xff0c;所以在golang中&#xff0c;「取消了对指针的一些偏移&…

【C语言】分支和循环专题应用

分支和循环专题应用 1、随机数生成1.1rand1.2 srand函数介绍1.3 time函数介绍1.4 设置随机数的范围 2、猜数字游戏的代码及实现 通过了分支和循环的介绍学习之后&#xff0c;我们可以运用分支和循环语句写出一些有趣的代码了&#xff0c;让我们来一起探索吧&#xff01; 写一个…

node.js 中的进程和线程工作原理

本文所有的代码均基于 node.js 14 LTS 版本分析 概念 进程是对正在运行中的程序的一个抽象&#xff0c;是系统进行资源分配和调度的基本单位&#xff0c;操作系统的其他所有内容都是围绕着进程展开的 线程是操作系统能够进行运算调度的最小单位&#xff0c;其是进程中的一个执…

远程桌面内网穿透是什么?有什么作用?

远程桌面内网穿透指的是通过特定技术手段&#xff0c;将处于内网中的电脑或服务器&#xff0c;通过外部网络&#xff08;互联网&#xff09;进行访问。内网穿透的主要作用是解决在内网环境下&#xff0c;远程设备与外部互联网之间的连接问题&#xff0c;允许用户从外部访问内网…

.Net Gacutil工具(全局程序集缓存工具)使用教程

GAC介绍&#xff1a; GAC&#xff08;Global Assembly Cache&#xff09;全局程序集缓存&#xff0c;是用于存放.Net应用程序共享的程序集。 像平常我们在Visual Studio中引用系统程序集时&#xff0c;这些程序集便来自于GAC。 GAC默认位置为&#xff1a;%windir%\Microsoft…

【ArcGIS】栅格计算器原理及案例介绍

ArcGIS&#xff1a;栅格计算器原理及案例介绍 栅格计算器&#xff08;Raster Calculator&#xff09;原理介绍案例案例1&#xff1a;计算栅格数据平均值 参考 栅格计算器&#xff08;Raster Calculator&#xff09;原理介绍 描述&#xff1a;在类似计算器的界面中&#xff0c;…

基于对数变换的图像美白增强,Matlab实现

博主简介&#xff1a;matlab图像处理&#xff08;QQ:3249726188&#xff09; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本次案例是基于对数变换的图像美白增强&#xff0c;用matlab实现。 一、案例背景和算法介绍 这次案例是美白算法&…

在实际LabVIEW开发中,哪些算法是常用的?

在LabVIEW的实际开发中&#xff0c;常用的算法主要集中在数据处理、控制系统、信号处理、图像处理等领域。以下是一些常用算法的介绍&#xff1a; 1. PID控制算法 PID&#xff08;比例-积分-微分&#xff09;控制是LabVIEW中常用的算法之一&#xff0c;广泛应用于工业自动化和…

剃(磨)前插齿刀设计计算开发第一步

之前接触滚刀比较多&#xff0c;渐开线齿轮滚刀的基准齿形的参数相对简单&#xff0c;都是由直线和圆弧组成的。插齿刀实质是一个开了前角后后角的“特殊齿轮”&#xff0c;在齿轮的齿形上增加“凸角”和“倒角”相对滚刀基准齿形就要复杂一些了&#xff1a; 要设计一款剃&…