node.js 中的进程和线程工作原理

本文所有的代码均基于 node.js 14 LTS 版本分析

概念

进程是对正在运行中的程序的一个抽象,是系统进行资源分配和调度的基本单位,操作系统的其他所有内容都是围绕着进程展开的

线程是操作系统能够进行运算调度的最小单位,其是进程中的一个执行任务(控制单元),负责当前进程中程序的执行

一个进程至少有一个线程,一个进程可以运行多个线程,这些线程共享同一块内存,线程之间可以共享对象、资源

单线程

require("http").createServer((req, res) => {res.writeHead(200);res.end("Hello World");}).listen(8000);
console.log("process id", process.pid);

top -pid 28840 查看线程数可见在这种情况下有 7 个线程

一个 node 进程通常包含:

  • 1 个 Javascript 执行主线程
  • 1 个 watchdog 监控线程用于处理调试信息
  • 1 个 v8 task scheduler 线程用于调度任务优先级
  • 4 个 v8 线程用于执行代码调优与 GC 等后台任务
  • 异步 I/O 的 libuv 线程池(如果涉及文件读写,默认为 4 个,可通过process.env.UV_THREADPOOL_SIZE进行设置。网络 I/O 不占用线程池)

事件循环

既然 js 执行线程只有一个,那么 node 还能支持高并发在于 node 进程中通过 libuv 实现了一个事件循环机制,当执主程发生阻塞事件,如 I/O 操作时,主线程会将耗时的操作放入事件队列中,然后继续执行后续程序。
事件循环会尝试从 libuv 的线程池中取出一个空闲线程去执行队列中的操作,执行完毕获得结果后,通知主线程,主线程执行相关回调,并且将线程实例归还给线程池。通过此模式循环往复,来保证非阻塞 I/O,以及主线程的高效执行

整个流程分为 2 个 while 循环

  • 外层大循环,执行 uv_run + DrainVMTasks
  • 内层 libuv uv_run事件循环
//src/node_main_instance.h
// ...// Start running the node.js instances, return the exit code when finished.int Run();
// ...// src/node_main_instance.cc
namespace node {
// ...
int nodeMainInstance::Run() {do {// 执行一次libuv事件循环uv_run(env->event_loop(), UV_RUN_DEFAULT);// 执行v8中的一些挂起的任务队列的函数per_process::v8_platform.DrainVMTasks(isolate_);// 检查事件循环是否还有待处理more = uv_loop_alive(env->event_loop());// 继续if (more && !env->is_stopping()) continue;// 无待处理if (!uv_loop_alive(env->event_loop())) {// 检查process.on(beforeExit)事件,若无退出if (EmitProcessBeforeExit(env.get()).IsNothing())break;}// 若有继续下一轮循环处理一下// Emit `beforeExit` if the loop became alive either after emitting// event, or after running some callbacks.more = uv_loop_alive(env->event_loop());} while (more == true && !env->is_stopping());//....}
}

主要有 libuv 提供的两个函数uv_runuv_loop_alive

  • uv_run(env->event_loop(), UV_RUN_DEFAULT) 执行一轮事件循环 。UV_RUN_DEFAULT 是 libuv 执行事件循环的执行模式,事件循环会一直运行直到没有更多的事件要处理或者程序被强制退出
typedef enum {UV_RUN_DEFAULT = 0,// 默认模式。在该模式下,事件循环会一直运行,直到没有更多的事件要处理或者程序被强制退出UV_RUN_ONCE,// 单次模式。在该模式下,事件循环只会运行一次,处理完所有当前已有的事件后立即退出。主要用于一些清理操作UV_RUN_NOWAIT // 非阻塞模式。在该模式下,事件循环会轮询当前的 I/O 事件,如果没有 I/O 事件需要处理则立即退出。在node代码中用来写单测
} uv_run_mode;

uv_run代码如下,它的返回值是是否有活跃事件

int uv_run(uv_loop_t* loop, uv_run_mode mode) {int timeout;int r;int ran_pending;// 判断有没有活跃的事件(事件监听 I/O、定时器等)r = uv__loop_alive(loop);// 无活跃事件,更新时间 loop->time = uv__hrtime(UV_CLOCK_FAST) / 1000000if (!r)uv__update_time(loop);//  若有活跃事件进进入while (r != 0 && loop->stop_flag == 0) {// 更新处理时间uv__update_time(loop);// 执行定时事件,从定时事件的最小堆里遍历出相较于loop->time 已过期的事件,并依次执行其回调uv__run_timers(loop);// ⭐️ 运行事件循环中当前已经被添加到队列中但还未执行的任务。如上次事件循环结束后进入的回调、IO结束的回调ran_pending = uv__run_pending(loop);// 遍历并执行空转(Idle)事件 ,内部的低优先级的任务或者清理工作等操作uv__run_idle(loop);// 遍历并执行准备(Prepare)事件,一些初始化工作或者准备工作,例如检查环境变量、加载配置文件等操作uv__run_prepare(loop);timeout = 0;if ((mode == UV_RUN_ONCE && !ran_pending) || mode == UV_RUN_DEFAULT)// 获取尚未触发的离现在最近的定时器的时间间隔(uv_backend_timeout),即事件循环到下一次循环的最长时间timeout = uv_backend_timeout(loop);// ⭐️ 去监听等待 I/O 事件触发,并以timeout的时间间隔作为最大监听时间,若超时还未有事件触发,则直接取消此次等待,剩下的会在下轮的uv__run_pending处理,因为要去处理定时器事件// timeout如果为0则马上进入下次循环不等待uv__io_poll(loop, timeout);// 更新一下mertic一些统计相关,和事件循环好像没啥关系uv__metrics_update_idle_time(loop);// ⭐️ 遍历并执行复查(Check)事件uv__run_check(loop);// ⭐️ 对于正在关闭的句柄(一些异步操作引用的底层资源释放)对其进行清理工作,如close事件uv__run_closing_handles(loop);if (mode == UV_RUN_ONCE) {// 单次模式下更新下最新更新时间,再把定时器清理完下面就break,确保退出时没有一些定时器到期没执行uv__update_time(loop);uv__run_timers(loop);}//  又检查一遍是否还有活跃事件,因为在上述一系列操作,有可能一些事件已经处理了r = uv__loop_alive(loop);// 只执行一次的退出if (mode == UV_RUN_ONCE || mode == UV_RUN_NOWAIT)break;}if (loop->stop_flag != 0)// 重置flag便于下次事件循环loop->stop_flag = 0;return r;
}

uv_backend_timeout 正常是查询最近的定时器间隔,有几种情况返回 0,即有一些更重要的事要做而不是同步等待 io 事件

其中idle_handlessetImmediate 设置执行一些高优任务,马上进入下一次循环处理setImmediate回调

一次事件循环总结

  • uv_loop_alive(env->event_loop())

即上面提到的 uv__loop_alive, 判断有没有活跃的事件(事件监听 I/O、定时器等)

总结

严格意义上来说对开发者写代码来说是单线程的,但是对于底层来说是多线程(例如源码中会有 SafeMap 这种线程安全的 map)。由于对于开发者来说是单线程,所以在 Node.js 日程开发中通常不会存在线程竞争的问题和线程锁的一些概念

子进程

从上面的单线程机制可知 Node.js 使用事件循环机制来实现高并发的 I/O 操作。但是如果代码中遇到 CPU 密集型场景,主线程将会长时间阻塞,无法处理额外的请求。为了解决这个问题,并充分发挥多核 CPU 的性能,Node 提供了 child_process 模块用于创建子进程。通过将 CPU 密集型操作分配给子进程处理,主线程可以继续处理其他请求,从而提高性能
主要提供了 4 个方法

  • spawn(command[, args][, options]):以指定的命令及参数数组创建一个子进程。可以通过来处理子进程的输出和错误信息,大数据量
const { spawn } = require("child_process");const ls = spawn("ls", ["-lh", "/usr"]);ls.stdout.on("data", (data) => {console.log(`stdout: ${data}`);
});ls.stderr.on("data", (data) => {console.error(`stderr: ${data}`);
});ls.on("close", (code) => {console.log(`子进程退出码:${code}`);
});
  • exec(command[, options][, callback]):对 spawn() 函数的封装,可以直接传入命令行执行,并以回调函数的形式返回输出和错误信息
const { exec } = require("child_process");exec("ls -lh /usr", (error, stdout, stderr) => {if (error) {console.error(`exec error: ${error}`);return;}console.log(`stdout: ${stdout}`);console.error(`stderr: ${stderr}`);
});
  • execFile(file[, args][, options][, callback]):类似于 exec() 函数,但默认不会创建命令行环境(相应的无法使用一些 shell 的操作符),而是直接以传入的文件创建新的进程,性能略微优于 exec()
const { execFile } = require("child_process");
execFile("ls", ["-lh", "/usr"], (error, stdout, stderr) => {if (error) {console.error(`execFile error: ${error}`);return;}console.log(`stdout: ${stdout}`);console.error(`stderr: ${stderr}`);
});
  • fork(modulePath[, args][, options]):内部使用 spawn()实现 ,只能用于创建 node.js 程序的子进程,默认会建立父子进程之间的 IPC 信道来传递消息
const { fork } = require("child_process");const lsProcess = fork("./test.js");lsProcess.on("message", (msg) => {console.log(`收到子进程的消息:${msg}`);
});lsProcess.on("close", (code) => {console.log(`子进程退出码:${code}`);
});
  • js - lib/child_process.js
const child_process = require("internal/child_process");
const { ChildProcess } = child_process;function spawn(file, args, options) {//...const child = new ChildProcess();//....return child;
}module.exports = {_forkChild,ChildProcess,exec,execFile,execFileSync,execSync,fork,spawn: spawnWithSignal,spawnSync,
};
  • lib/internal/child_process.js
const { Process } = internalBinding("process_wrap");
this._handle = new Process();ChildProcess.prototype.spawn = function (options) {//..const err = this._handle.spawn(options);//..
};
  • c++ - src/node_binding.cc


  • src/process_wrap.cc

Cluster

基于child_process node 提供了专门用于创建多进程网络服务的[cluster](https://nodejs.org/api/cluster.html)模块
创建多个子进程,并在每个子进程中启动一个独立的 HTTP 服务器进行监听和处理客户端请求

const cluster = require("cluster");
const http = require("http");
const numCPUs = require("os").cpus().length;if (cluster.isMaster) {console.log(`Master ${process.pid} is running`);// 创建多个子进程for (let i = 0; i < numCPUs; i++) {cluster.fork();}// 监听子进程退出事件,自动重启cluster.on("exit", (worker, code, signal) => {console.log(`Worker ${worker.process.pid} died`);cluster.fork();});
} else {console.log(`Worker ${process.pid} started`);// 每个子进程的pid是不一样// 在每个子进程中启动 HTTP 服务器http.createServer((req, res) => {res.writeHead(200);res.end("Hello, world!");}).listen(8000);
}

如何解决多个工作进程监听一个端口的问题

从 js 层面分析

  • 入口区分 - 子进程环境变量含NODE_UNIQUE_ID,在创建子进程时传入
// lib/cluster.js
const childOrMaster = "NODE_UNIQUE_ID" in process.env ? "child" : "master";
module.exports = require(`internal/cluster/${childOrMaster}`);
  • http.createServer -> lib/_http_server.js#Server - lib/_http_server.js#Server 继承于 TCP 的lib/net.js#Server
  • listen方法调用的是lib/net.js#Server
// lib/net.js
Server.prototype.listen = function (...args) {// ....// 关键逻辑if (typeof options.port === "number" || typeof options.port === "string") {validatePort(options.port, "options.port");backlog = options.backlog || backlogFromArgs;// start TCP server listening on host:portif (options.host) {lookupAndListen(this,options.port | 0,options.host,backlog,options.exclusive,flags);} else {// Undefined host, listens on unspecified address// Default addressType 4 will be used to search for master serverlistenInCluster(this,null,options.port | 0,4,backlog,undefined,options.exclusive);}return this;}//....
};

lookupAndListen内部其实也是对option.host进行调dns模块查询host后调的listenInCluster

// 工作进程
function listenInCluster(server,address,port,addressType,backlog,fd,exclusive,flags
) {exclusive = !!exclusive;if (cluster === undefined) cluster = require("cluster");// isMaster是通过NODE_UNIQUE_ID是否存在判断// 非cluster的http模块直接起服务NODE_UNIQUE_ID是空if (cluster.isMaster || exclusive) {server._listen2(address, port, addressType, backlog, fd, flags);return;}const serverQuery = {address: address,port: port,addressType: addressType,fd: fd,flags,};cluster._getServer(server, serverQuery, listenOnMasterHandle);function listenOnMasterHandle(err, handle) {// 获取handler后挂载到子进程server上server._handle = handle;server._listen2(address, port, addressType, backlog, fd, flags);}
}

在 listenInCluster 函数中,会判断当前的进程是否是主进程,

  • 如果是则直接进行调用_listen2监听server_listen2就是 cluster 出现之前的监听函数

Server.prototype._listen2 = setupListenHandle; // legacy alias

  • 如果不是,则通过工作进程查询到主进程的 handleconst { TCP } = internalBinding('tcp_wrap'); ,c++层暴露的用于处理 TCP 的对象),然后在主进程的 handle 上进行监听

cluster._getServer实现
主要逻辑是向当前工作进程发送一个类型为 queryServer 的消息,这个消息会被处理成 cluster 内部消息后发送给主进程

// lib/internal/cluster/child.js
cluster._getServer = function(obj, options, cb) {
// ...const message = {act: 'queryServer',index,data: null,...options};message.address = address;send(message, (reply, handle) => {else// 进这个分支rr(reply, indexesKey, cb);              // Round-robin.//...});obj.once('listening', () => {//..send(message);//...});
};

主进程有相应的响应 queryServer 消息的地方

// lib/internal/cluster/master.js
function onmessage(message, handle) {
//...else if (message.act === 'queryServer')queryServer(worker, message);
//...
}function queryServer(worker, message) {
//....
// 唯一标识const key = `${message.address}:${message.port}:${message.addressType}:` +`${message.fd}:${message.index}`;let handle = handles.get(key);if (handle === undefined) {let address = message.address;//第一次进入时,会创建RoundRobinHandle,RoundRobinHandle内部有实际监听端口的逻辑let constructor = RoundRobinHandle;handle = new constructor(key, address, message);//....handles.set(key, handle);}if (!handle.data)handle.data = message.data;// 添加当前工作进程加入到RoundRobinHandle工作队列handle.add(worker, (errno, reply, handle) => {const { data } = handles.get(key);send(worker, {errno,key,ack: message.seq,data,...reply}, handle);});
}// lib/internal/cluster/round_robin_handle.js
function RoundRobinHandle(key, address, { port, fd, flags }) {//...this.server = net.createServer(assert.fail);//...this.server.listen(address);// 主进程处理请求分发this.server.once('listening', () => {this.handle = this.server._handle;this.handle.onconnection = (err, handle) => this.distribute(err, handle);});
}

RoundRobinHandle 也会覆盖主进程的Server.handle 的 onconnection 逻辑,将其替换成 round-robin 逻辑,即this.handle.onconnection = (err, handle) => this.distribute(err, handle);

再回到这个代码

  // 工作进程cluster._getServer(server, serverQuery, listenOnMasterHandle);// _getServer实现send(message, (reply, handle) => {// ....else// 进这个分支// replyrr(reply, indexesKey, cb);              // Round-robin.//...});function listenOnMasterHandle(err, handle) {// 获取handler后挂载到子进程server上server._handle = handle;server._listen2(address, port, addressType, backlog, fd, flags);}

在 rr 函数中创建一个 fake handler 返回


这个 handler 就是上面 rr 函数中获取的 handler,而_listen2内部调用的实际是 fake handler 中的 listen 空函数,实际上工作进程并没有对端口进行监听
RoundRobinHandle 的distribute实现

// lib/internal/cluster/round_robin_handle.js
RoundRobinHandle.prototype.distribute = function (err, handle) {ArrayPrototypePush(this.handles, handle);const [workerEntry] = this.free; // this.free is a SafeMap// 选择一个空闲的进程处理if (ArrayIsArray(workerEntry)) {const { 0: workerId, 1: worker } = workerEntry;this.free.delete(workerId);this.handoff(worker);}
};
RoundRobinHandle.prototype.handoff = function (worker) {//...const handle = ArrayPrototypeShift(this.handles);const message = { act: "newconn", key: this.key };//...// 取出handler分发给子进程,消息的act为newconnsendHelper(worker.process, message, handle, (reply) => {// 使用轮询进行分发if (reply.accepted) handle.close();else this.distribute(0, handle); // Worker is shutting down. Send to another.this.handoff(worker);});
};

工作进程处理newconn消息

// lib/internal/cluster/child.js// sendHelper分发的事件会带上cmd: 'NODE_CLUSTER',NODE_前缀的会触发internalMessage
process.on("internalMessage", internal(worker, onmessage));
send({ act: "online" });function onmessage(message, handle) {if (message.act === "newconn") onconnection(message, handle);else if (message.act === "disconnect")ReflectApply(_disconnect, worker, [true]);
}function onconnection(message, handle) {// 在子进程接收到handle引用后,它会重新创建一个与主进程相对应的 handle 对象,从而实现对共享资源的访问const key = message.key;const server = handles.get(key);const accepted = server !== undefined;send({ ack: message.seq, accepted });if (accepted)// lib/net.js里面tcp server的onconnection处理server.onconnection(0, handle);
}

总结

当主进程的 RoundRobinHandle 接收到一个监听请求时,它会调用distribute函数将客户端的 handle(socket 对象) 传递给工作进程。具体的逻辑为:将这个 handle 保存到队列中,并从工作进程队列中获取一个空闲的工作进程。如果存在空闲的工作进程,则从队列中取出一个工作进程并向其发送act: "newconn" 消息,以将 handle 传递给工作进程。工作进程会使用此 handle 与客户端建立连接,并向主进程发送一条消息表示是否接受了请求。主进程通过 accepted 属性来判断工作进程是否已经接受了请求。如果是则关闭与客户端的连接,并让其与工作进程进行通信。最后,主进程会不断地轮询上述过程以处理更多的客户端请求

多线程

为了降低 js 对于 CPU 密集型任务计算的负担,node.js v10 之后引入了 worker_threads。可以在 nodejs 进程内可以创建多个线程。主线程和 worker 线程之间可以通过parentPort实现通信,worker 线程之间可以使用 MessageChannel 进行通信。多个线程之间可以使用SharedArrayBuffer实现共享内存,无需序列化

const {Worker,isMainThread,parentPort,workerData,
} = require("worker_threads");if (isMainThread) {// 主线程创建共享内存const sharedBuffer = new SharedArrayBuffer(1024);const worker = new Worker(__filename, { workerData: sharedBuffer });// 向子线程发送共享内存的引用worker.postMessage(sharedBuffer);// 接收子线程发送的消息worker.on("message", (data) => {console.log("sharedBuffer", sharedBuffer);});
} else {// 子线程接收主线程发送的共享内存引用,并使用Atomics操作进行读写const sharedBuffer = workerData;const sharedArray = new Int32Array(sharedBuffer);setInterval(() => {const oldValue = Atomics.load(sharedArray, 0);const newValue = oldValue + 1;Atomics.store(sharedArray, 0, newValue);parentPort.postMessage(`Current value in shared memory: ${newValue}`);}, 1000);
}

多线程下共享内存为避免者竞态条件。node.js 也提供了Atomics对象用于执行原子操作,可以保证多个线程对共享内存的读写操作原子性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879573.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

远程桌面内网穿透是什么?有什么作用?

远程桌面内网穿透指的是通过特定技术手段&#xff0c;将处于内网中的电脑或服务器&#xff0c;通过外部网络&#xff08;互联网&#xff09;进行访问。内网穿透的主要作用是解决在内网环境下&#xff0c;远程设备与外部互联网之间的连接问题&#xff0c;允许用户从外部访问内网…

.Net Gacutil工具(全局程序集缓存工具)使用教程

GAC介绍&#xff1a; GAC&#xff08;Global Assembly Cache&#xff09;全局程序集缓存&#xff0c;是用于存放.Net应用程序共享的程序集。 像平常我们在Visual Studio中引用系统程序集时&#xff0c;这些程序集便来自于GAC。 GAC默认位置为&#xff1a;%windir%\Microsoft…

【ArcGIS】栅格计算器原理及案例介绍

ArcGIS&#xff1a;栅格计算器原理及案例介绍 栅格计算器&#xff08;Raster Calculator&#xff09;原理介绍案例案例1&#xff1a;计算栅格数据平均值 参考 栅格计算器&#xff08;Raster Calculator&#xff09;原理介绍 描述&#xff1a;在类似计算器的界面中&#xff0c;…

基于对数变换的图像美白增强,Matlab实现

博主简介&#xff1a;matlab图像处理&#xff08;QQ:3249726188&#xff09; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本次案例是基于对数变换的图像美白增强&#xff0c;用matlab实现。 一、案例背景和算法介绍 这次案例是美白算法&…

在实际LabVIEW开发中,哪些算法是常用的?

在LabVIEW的实际开发中&#xff0c;常用的算法主要集中在数据处理、控制系统、信号处理、图像处理等领域。以下是一些常用算法的介绍&#xff1a; 1. PID控制算法 PID&#xff08;比例-积分-微分&#xff09;控制是LabVIEW中常用的算法之一&#xff0c;广泛应用于工业自动化和…

剃(磨)前插齿刀设计计算开发第一步

之前接触滚刀比较多&#xff0c;渐开线齿轮滚刀的基准齿形的参数相对简单&#xff0c;都是由直线和圆弧组成的。插齿刀实质是一个开了前角后后角的“特殊齿轮”&#xff0c;在齿轮的齿形上增加“凸角”和“倒角”相对滚刀基准齿形就要复杂一些了&#xff1a; 要设计一款剃&…

深入分析计算机网络性能指标

速率带宽吞吐量时延时延带宽积往返时间RTT利用率丢包率图书推荐内容简介作者简介 速率 连接在计算机网络上的主机在数字信道上传送比特的速率&#xff0c;也称为比特率或数据率。 基本单位&#xff1a;bit/s&#xff08;b/s、bps&#xff09; 常用单位&#xff1a;kb/s&#x…

MacOS Catalina 从源码构建Qt6.2开发库之01: 编译Qt6.2源代码

安装xcode&#xff0c; cmake&#xff0c; ninja brew install node mac下安装OpenGL库并使之对各项目可见 在macOS上安装OpenGL通常涉及到安装一些依赖库&#xff0c;如MGL、GLUT或者是GLEW等&#xff0c;同时确保LLVM的OpenGL框架和相关工具链的兼容性。以下是一个基本的安装…

【算法】动态规划—编辑距离

题目 给你两个单词 word1 和 word2&#xff0c; 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作&#xff1a; 插入一个字符删除一个字符替换一个字符 思路分析 编辑距离问题就是给定两个字符串 s1 和 s2&#xff0c;只能用三种操作…

【隐私计算】Paillier半同态加密算法

一、何为同态加密&#xff08;HE&#xff09;&#xff1f; HE是一种特殊的加密方法&#xff0c;它允许直接对加密数据执行计算&#xff0c;如加法和乘法&#xff0c;而计算过程不会泄露原文的任何信息。计算的结果仍然是加密的&#xff0c;拥有密钥的用户对处理过的密文数据进…

编程辅助工具下一个热门应用场景是什么?(一)

&#x1f381;&#x1f449;点击进入文心快码 Baidu Comate 官网&#xff0c;体验智能编码之旅&#xff0c;还有超多福利&#xff01;&#x1f381; 本系列视频来自百度工程效能部的前端研发经理杨经纬&#xff0c;她在由开源中国主办的“AI编程革新研发效能”OSC源创会杭州站1…

QT之QML学习五:添加自定义Qml组件,以及组件管理

开发环境: 1、Qt 6.7.2 2、Pyside6 3、Python 3.11.4 4、Windows 10 重要的事情说三遍,使用自定义qml参考链接: Qt官网参考网址!!! 重要的事情说三遍,使用自定义qml参考链接: Qt官网参考网址!!! 重要的事情说三遍,使用自定义qml参考链接: Qt官网参考网址!!!…

6.1 溪降技术:绳结

目录 6.1 绳结电子书&#xff1a;绳结1级概览正确打结打绳结绳结组成部分学习术语八字套结&#xff08;双八字结&#xff09;观看技术步骤双重单结&#xff08;反手结绳耳&#xff09;观看技术步骤骡子结&#xff08;驮马结&#xff09;观看技术步骤 6.1 绳结 电子书&#xff1…

POI生成Excel文件增加数据验证(下拉序列)

POI版本为5.2.2 正常的如果不超过255字符的数据验证可以参照如下代码&#xff1a; /*** <p>设置某列的数据验证</p>* param Sheet 作用于哪一个sheet* param colIndex 需要增加数据验证的列的索引* String[] names 数据验证的序列&#xff0c;就是excel下拉列表的内…

持续集成与持续交付CI/CD

CI/CD 是指持续集成&#xff08;Continuous Integration&#xff09;和持续部署&#xff08;Continuous Deployment&#xff09;或持续交付&#xff08;Continuous Delivery&#xff09; 持续集成&#xff08;Continuous Integration&#xff09; 持续集成是一种软件开发实践&…

HTML贪吃蛇游戏

文章目录 贪吃蛇游戏 运行效果代码 贪吃蛇游戏 贪吃蛇是一款经典的休闲益智游戏。本文将通过HTML5和JavaScript详细解析如何实现一个简易版的贪吃蛇游戏。游戏的主要逻辑包括蛇的移动、碰撞检测、食物生成等功能。以下是游戏的完整代码及注释解析。&#xff08;纯属好玩&#…

(学习总结17)C++继承

C继承 一、继承的概念与定义继承的概念继承定义1. 定义格式2. 继承基类成员访问方式的变化 继承类模板 二、基类和派生类间的转换三、继承中的作用域隐藏规则 四、派生类的默认成员函数4个常见默认成员函数实现一个不能被继承的类 五、继承与友元六、继承与静态成员七、多继承及…

HTML 揭秘:HTML 编码快速入门

HTML 揭秘&#xff1a;HTML 编码快速入门 一 . 前端知识介绍二 . HTML 介绍三 . HTML 快速入门四 . HTML 编辑器 - VSCode4.1 插件安装4.2 修改主题配色4.3 修改快捷键4.4 设置自动保存4.5 创建 HTML 文件4.5 书写 HTML 代码4.6 常见快捷键 五 . 基础标签5.1 字体标签5.1.1 col…

物品识别——基于python语言

目录 1.物品识别 2.模型介绍 3.文件框架 4.代码示例 4.1 camera.py 4.2 interaction.py 4.3 object_detection.py 4.4 main.py 4.5 运行结果 5.总结 1.物品识别 该项目使用Python&#xff0c;OpenCV进行图像捕捉&#xff0c;进行物品识别。我们将使用YOLO&#xff08…

大数据处理技术:HBase的安装与基本操作

目录 1 实验名称 2 实验目的 3 实验内容 4 实验原理 5 实验过程或源代码 5.1 Hbase数据库的安装 5.2 创建表 5.3 添加数据、删除数据、删除表 5.4 使用Java操作HBase 6 实验结果 6.1 Hbase数据库的安装 6.2 创建表 6.3 添加数据、删除数据、删除表 6.4 使用Java操…