# UNQ_C1# GRADED FUNCTION: compute_entropydefcompute_entropy(y):"""Computes the entropy for Args:y (ndarray): Numpy array indicating whether each example at a node isedible (`1`) or poisonous (`0`)Returns:entropy (float): Entropy at that node"""# You need to return the following variables correctlyentropy =0### START CODE HERE ###p=len(y[y==1])/len(y)if pos==size or pos==0:entropy=0else:entropy=-p*np.log2(p)-(1-p)*np.log2(1-p)### END CODE HERE ### return entropy
根据特征分裂结点
# UNQ_C2# GRADED FUNCTION: split_datasetdefsplit_dataset(X, node_indices, feature):"""Splits the data at the given node intoleft and right branchesArgs:X (ndarray): Data matrix of shape(n_samples, n_features)node_indices (ndarray): List containing the active indices. I.e, the samples being considered at this step.feature (int): Index of feature to split onReturns:left_indices (ndarray): Indices with feature value == 1right_indices (ndarray): Indices with feature value == 0"""# You need to return the following variables correctlyleft_indices =[]right_indices =[]### START CODE HERE ###for i in node_indices:if X[i,feature]==1:left_indices.append(i)else:right_indices.append(i)### END CODE HERE ###return left_indices, right_indices
计算信息增益
# UNQ_C3# GRADED FUNCTION: compute_information_gaindefcompute_information_gain(X, y, node_indices, feature):"""Compute the information of splitting the node on a given featureArgs:X (ndarray): Data matrix of shape(n_samples, n_features)y (array like): list or ndarray with n_samples containing the target variablenode_indices (ndarray): List containing the active indices. I.e, the samples being considered in this step.Returns:cost (float): Cost computed"""# Split datasetleft_indices, right_indices = split_dataset(X, node_indices, feature)# Some useful variablesX_node, y_node = X[node_indices], y[node_indices]X_left, y_left = X[left_indices], y[left_indices]X_right, y_right = X[right_indices], y[right_indices]# You need to return the following variables correctlyinformation_gain =0### START CODE HERE #### Weights lefts=len(y_left)rights=len(y_right)w_left=lefts/(lefts+rights)w_right=rights/(lefts+rights)#Weighted entropyH_left=compute_entropy(y_left)H_right=compute_entropy(y_right)#Information gain H_root=compute_entropy(y_node)information_gain=H_root-(w_left*H_left+w_right*H_right)### END CODE HERE ### return information_gain
选择最佳分裂特征
# UNQ_C4# GRADED FUNCTION: get_best_splitdefget_best_split(X, y, node_indices):"""Returns the optimal feature and threshold valueto split the node data Args:X (ndarray): Data matrix of shape(n_samples, n_features)y (array like): list or ndarray with n_samples containing the target variablenode_indices (ndarray): List containing the active indices. I.e, the samples being considered in this step.Returns:best_feature (int): The index of the best feature to split"""# Some useful variablesnum_features = X.shape[1]# You need to return the following variables correctlybest_feature =-1IG=0### START CODE HERE ###for i inrange(num_features):ig=compute_information_gain(X,y,node_indices,i)if ig>IG:IG=igbest_feature=i### END CODE HERE ## return best_feature
随机森林算法
defbuild_tree_recursive(X, y, node_indices, branch_name, max_depth, current_depth):"""Build a tree using the recursive algorithm that split the dataset into 2 subgroups at each node.This function just prints the tree.Args:X (ndarray): Data matrix of shape(n_samples, n_features)y (array like): list or ndarray with n_samples containing the target variablenode_indices (ndarray): List containing the active indices. I.e, the samples being considered in this step.branch_name (string): Name of the branch. ['Root', 'Left', 'Right']max_depth (int): Max depth of the resulting tree. current_depth (int): Current depth. Parameter used during recursive call."""# Maximum depth reached - stop splittingif current_depth == max_depth:formatting =" "*current_depth +"-"*current_depthprint(formatting,"%s leaf node with indices"% branch_name, node_indices)return# Otherwise, get best split and split the data# Get the best feature and threshold at this nodebest_feature = get_best_split(X, y, node_indices) tree.append((current_depth, branch_name, best_feature, node_indices))formatting ="-"*current_depthprint("%s Depth %d, %s: Split on feature: %d"%(formatting, current_depth, branch_name, best_feature))# Split the dataset at the best featureleft_indices, right_indices = split_dataset(X, node_indices, best_feature)# continue splitting the left and the right child. Increment current depthbuild_tree_recursive(X, y, left_indices,"Left", max_depth, current_depth+1)build_tree_recursive(X, y, right_indices,"Right", max_depth, current_depth+1)
一、compute_frame_duration函数的定义
compute_frame_duration函数定义在FFmpeg源码(本文演示用的FFmpeg源码版本为7.0.1)的源文件libavformat/demux.c中:
/*** Return the frame duration in seconds. Return 0 if not available.*/
stat…