爆改YOLOv8|利用图像分割网络UNetV2改进yolov8主干-即插即用

1,本文介绍

U-Net v2 通过引入创新的跳跃连接设计来提升医学图像分割的精度。这一版本专注于更有效地融合不同层级的特征,包括高级特征中的语义信息和低级特征中的细节信息。通过这种优化,U-Net v2 能够在低级特征中注入丰富的语义,同时细化高级特征,从而实现更精准的对象边界描绘和小结构提取。

其主要技术创新包括:

  • 多级特征提取:使用深度神经网络编码器从输入图像中提取不同层次的特征。
  • 语义与细节融合(Semantics and Detail Infusion, SDI)模块:通过哈达玛积操作,将高级特征中的语义信息与低级特征中的细节信息融合到各层级的特征图中。
  • 改进的跳跃连接:这些新型跳跃连接增强了各层特征的语义和细节表现,从而在解码器阶段实现更高精度的分割。

关于UNetV2的详细介绍可以看论文:https://arxiv.org/abs/2311.17791

本文将讲解如何将UNetV2融合进yolov8

话不多说,上代码!

2, 将UNetV2融合进yolov8

2.1 步骤一

找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个UNetV2.py文件,文件名字可以根据你自己的习惯起,然后将UNetV2的核心代码复制进去


import os.path
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import math__all__ = ['pvt_v2_b0', 'pvt_v2_b1', 'pvt_v2_b2', 'pvt_v2_b3', 'pvt_v2_b4', 'pvt_v2_b5']class ChannelAttention(nn.Module):def __init__(self, in_planes, ratio=16):super(ChannelAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)self.relu1 = nn.ReLU()self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))out = avg_out + max_outreturn self.sigmoid(out)class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super(SpatialAttention, self).__init__()assert kernel_size in (3, 7), 'kernel size must be 3 or 7'padding = 3 if kernel_size == 7 else 1self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)x = torch.cat([avg_out, max_out], dim=1)x = self.conv1(x)return self.sigmoid(x)class BasicConv2d(nn.Module):def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_planes, out_planes,kernel_size=kernel_size, stride=stride,padding=padding, dilation=dilation, bias=False)self.bn = nn.BatchNorm2d(out_planes)self.relu = nn.ReLU(inplace=True)def forward(self, x):x = self.conv(x)x = self.bn(x)return xclass Encoder(nn.Module):def __init__(self, pretrain_path):super().__init__()self.backbone = pvt_v2_b2()if pretrain_path is None:warnings.warn('please provide the pretrained pvt model. Not using pretrained model.')elif not os.path.isfile(pretrain_path):warnings.warn(f'path: {pretrain_path} does not exists. Not using pretrained model.')else:print(f"using pretrained file: {pretrain_path}")save_model = torch.load(pretrain_path)model_dict = self.backbone.state_dict()state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}model_dict.update(state_dict)self.backbone.load_state_dict(model_dict)def forward(self, x):f1, f2, f3, f4 = self.backbone(x)  # (x: 3, 352, 352)return f1, f2, f3, f4class SDI(nn.Module):def __init__(self, channel):super().__init__()self.convs = nn.ModuleList([nn.Conv2d(channel, channel, kernel_size=3, stride=1, padding=1) for _ in range(4)])def forward(self, xs, anchor):ans = torch.ones_like(anchor)target_size = anchor.shape[-1]for i, x in enumerate(xs):if x.shape[-1] > target_size:x = F.adaptive_avg_pool2d(x, (target_size, target_size))elif x.shape[-1] < target_size:x = F.interpolate(x, size=(target_size, target_size),mode='bilinear', align_corners=True)ans = ans * self.convs[i](x)return ansclass UNetV2(nn.Module):"""use SpatialAtt + ChannelAtt"""def __init__(self, channel=3, n_classes=1, deep_supervision=True, pretrained_path=None):super().__init__()self.deep_supervision = deep_supervisionself.encoder = Encoder(pretrained_path)self.ca_1 = ChannelAttention(64)self.sa_1 = SpatialAttention()self.ca_2 = ChannelAttention(128)self.sa_2 = SpatialAttention()self.ca_3 = ChannelAttention(320)self.sa_3 = SpatialAttention()self.ca_4 = ChannelAttention(512)self.sa_4 = SpatialAttention()self.Translayer_1 = BasicConv2d(64, channel, 1)self.Translayer_2 = BasicConv2d(128, channel, 1)self.Translayer_3 = BasicConv2d(320, channel, 1)self.Translayer_4 = BasicConv2d(512, channel, 1)self.sdi_1 = SDI(channel)self.sdi_2 = SDI(channel)self.sdi_3 = SDI(channel)self.sdi_4 = SDI(channel)self.seg_outs = nn.ModuleList([nn.Conv2d(channel, n_classes, 1, 1) for _ in range(4)])self.deconv2 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2, padding=1,bias=False)self.deconv3 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,padding=1, bias=False)self.deconv4 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,padding=1, bias=False)self.deconv5 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,padding=1, bias=False)self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]def forward(self, x):seg_outs = []f1, f2, f3, f4 = self.encoder(x)f1 = self.ca_1(f1) * f1f1 = self.sa_1(f1) * f1f1 = self.Translayer_1(f1)f2 = self.ca_2(f2) * f2f2 = self.sa_2(f2) * f2f2 = self.Translayer_2(f2)f3 = self.ca_3(f3) * f3f3 = self.sa_3(f3) * f3f3 = self.Translayer_3(f3)f4 = self.ca_4(f4) * f4f4 = self.sa_4(f4) * f4f4 = self.Translayer_4(f4)f41 = self.sdi_4([f1, f2, f3, f4], f4)f31 = self.sdi_3([f1, f2, f3, f4], f3)f21 = self.sdi_2([f1, f2, f3, f4], f2)f11 = self.sdi_1([f1, f2, f3, f4], f1)seg_outs.append(self.seg_outs[0](f41))y = self.deconv2(f41) + f31seg_outs.append(self.seg_outs[1](y))y = self.deconv3(y) + f21seg_outs.append(self.seg_outs[2](y))y = self.deconv4(y) + f11seg_outs.append(self.seg_outs[3](y))for i, o in enumerate(seg_outs):seg_outs[i] = F.interpolate(o, scale_factor=4, mode='bilinear')if self.deep_supervision:return seg_outs[::-1]else:return seg_outs[-1]class Mlp(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.dwconv = DWConv(hidden_features)self.act = act_layer()self.fc2 = nn.Linear(hidden_features, out_features)self.drop = nn.Dropout(drop)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x, H, W):x = self.fc1(x)x = self.dwconv(x, H, W)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return xclass Attention(nn.Module):def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):super().__init__()assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."self.dim = dimself.num_heads = num_headshead_dim = dim // num_headsself.scale = qk_scale or head_dim ** -0.5self.q = nn.Linear(dim, dim, bias=qkv_bias)self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)self.sr_ratio = sr_ratioif sr_ratio > 1:self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)self.norm = nn.LayerNorm(dim)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x, H, W):B, N, C = x.shapeq = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)if self.sr_ratio > 1:x_ = x.permute(0, 2, 1).reshape(B, C, H, W)x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)x_ = self.norm(x_)kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)else:kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)k, v = kv[0], kv[1]attn = (q @ k.transpose(-2, -1)) * self.scaleattn = attn.softmax(dim=-1)attn = self.attn_drop(attn)x = (attn @ v).transpose(1, 2).reshape(B, N, C)x = self.proj(x)x = self.proj_drop(x)return xclass Block(nn.Module):def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):super().__init__()self.norm1 = norm_layer(dim)self.attn = Attention(dim,num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)# NOTE: drop path for stochastic depth, we shall see if this is better than dropout hereself.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x, H, W):x = x + self.drop_path(self.attn(self.norm1(x), H, W))x = x + self.drop_path(self.mlp(self.norm2(x), H, W))return xclass OverlapPatchEmbed(nn.Module):""" Image to Patch Embedding"""def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):super().__init__()img_size = to_2tuple(img_size)patch_size = to_2tuple(patch_size)self.img_size = img_sizeself.patch_size = patch_sizeself.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]self.num_patches = self.H * self.Wself.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,padding=(patch_size[0] // 2, patch_size[1] // 2))self.norm = nn.LayerNorm(embed_dim)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x):x = self.proj(x)_, _, H, W = x.shapex = x.flatten(2).transpose(1, 2)x = self.norm(x)return x, H, Wclass PyramidVisionTransformerImpr(nn.Module):def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):super().__init__()self.num_classes = num_classesself.depths = depths# patch_embedself.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,embed_dim=embed_dims[0])self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],embed_dim=embed_dims[1])self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],embed_dim=embed_dims[2])self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],embed_dim=embed_dims[3])# transformer encoderdpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rulecur = 0self.block1 = nn.ModuleList([Block(dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,sr_ratio=sr_ratios[0])for i in range(depths[0])])self.norm1 = norm_layer(embed_dims[0])cur += depths[0]self.block2 = nn.ModuleList([Block(dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,sr_ratio=sr_ratios[1])for i in range(depths[1])])self.norm2 = norm_layer(embed_dims[1])cur += depths[1]self.block3 = nn.ModuleList([Block(dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,sr_ratio=sr_ratios[2])for i in range(depths[2])])self.norm3 = norm_layer(embed_dims[2])cur += depths[2]self.block4 = nn.ModuleList([Block(dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,sr_ratio=sr_ratios[3])for i in range(depths[3])])self.norm4 = norm_layer(embed_dims[3])# classification head# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()self.apply(self._init_weights)self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def init_weights(self, pretrained=None):if isinstance(pretrained, str):logger = 1#load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)def reset_drop_path(self, drop_path_rate):dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]cur = 0for i in range(self.depths[0]):self.block1[i].drop_path.drop_prob = dpr[cur + i]cur += self.depths[0]for i in range(self.depths[1]):self.block2[i].drop_path.drop_prob = dpr[cur + i]cur += self.depths[1]for i in range(self.depths[2]):self.block3[i].drop_path.drop_prob = dpr[cur + i]cur += self.depths[2]for i in range(self.depths[3]):self.block4[i].drop_path.drop_prob = dpr[cur + i]def freeze_patch_emb(self):self.patch_embed1.requires_grad = False@torch.jit.ignoredef no_weight_decay(self):return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be betterdef get_classifier(self):return self.headdef reset_classifier(self, num_classes, global_pool=''):self.num_classes = num_classesself.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()# def _get_pos_embed(self, pos_embed, patch_embed, H, W):#     if H * W == self.patch_embed1.num_patches:#         return pos_embed#     else:#         return F.interpolate(#             pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2),#             size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1)def forward_features(self, x):B = x.shape[0]outs = []# stage 1x, H, W = self.patch_embed1(x)for i, blk in enumerate(self.block1):x = blk(x, H, W)x = self.norm1(x)x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()outs.append(x)# stage 2x, H, W = self.patch_embed2(x)for i, blk in enumerate(self.block2):x = blk(x, H, W)x = self.norm2(x)x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()outs.append(x)# stage 3x, H, W = self.patch_embed3(x)for i, blk in enumerate(self.block3):x = blk(x, H, W)x = self.norm3(x)x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()outs.append(x)# stage 4x, H, W = self.patch_embed4(x)for i, blk in enumerate(self.block4):x = blk(x, H, W)x = self.norm4(x)x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()outs.append(x)return outs# return x.mean(dim=1)def forward(self, x):x = self.forward_features(x)# x = self.head(x)return xclass DWConv(nn.Module):def __init__(self, dim=768):super(DWConv, self).__init__()self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)def forward(self, x, H, W):B, N, C = x.shapex = x.transpose(1, 2).view(B, C, H, W)x = self.dwconv(x)x = x.flatten(2).transpose(1, 2)return xdef _conv_filter(state_dict, patch_size=16):""" convert patch embedding weight from manual patchify + linear proj to conv"""out_dict = {}for k, v in state_dict.items():if 'patch_embed.proj.weight' in k:v = v.reshape((v.shape[0], 3, patch_size, patch_size))out_dict[k] = vreturn out_dictclass pvt_v2_b0(PyramidVisionTransformerImpr):def __init__(self, **kwargs):super(pvt_v2_b0, self).__init__(patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],drop_rate=0.0, drop_path_rate=0.1)class pvt_v2_b1(PyramidVisionTransformerImpr):def __init__(self, **kwargs):super(pvt_v2_b1, self).__init__(patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],drop_rate=0.0, drop_path_rate=0.1)class pvt_v2_b2(PyramidVisionTransformerImpr):def __init__(self, **kwargs):super(pvt_v2_b2, self).__init__(patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],drop_rate=0.0, drop_path_rate=0.1)class pvt_v2_b3(PyramidVisionTransformerImpr):def __init__(self, **kwargs):super(pvt_v2_b3, self).__init__(patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],drop_rate=0.0, drop_path_rate=0.1)class pvt_v2_b4(PyramidVisionTransformerImpr):def __init__(self, **kwargs):super(pvt_v2_b4, self).__init__(patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],drop_rate=0.0, drop_path_rate=0.1)class pvt_v2_b5(PyramidVisionTransformerImpr):def __init__(self, **kwargs):super(pvt_v2_b5, self).__init__(patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],drop_rate=0.0, drop_path_rate=0.1)

2.2 步骤二

在task.py导入我们的模块

from .modules.UNetV2 import *

2.3 步骤三

按下图所示进行修改,在task.py的parse_model方法中

2.4 步骤四

在task.py的parse_model方法中,添加如下代码

    elif m in {pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b3, pvt_v2_b4, pvt_v2_b5}:m = m(*args)c2 = m.width_list backbone = True

2.5 步骤五

在task.py的parse_model方法中,对如下代码进行修改,修改为如图所示

if isinstance(c2, list):m_ = mm_.backbone = Trueelse:m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typem.np = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type

2.6 步骤六

在task.py的parse_model方法中,对如下代码进行修改,修改为如图所示,在上图的紧邻后方

2.7 步骤七

在task.py的BaseModel类中,对如下代码进行修改,修改为如图所示

 def _predict_once(self, x, profile=False, visualize=False, embed=None):"""Perform a forward pass through the network.Args:x (torch.Tensor): The input tensor to the model.profile (bool):  Print the computation time of each layer if True, defaults to False.visualize (bool): Save the feature maps of the model if True, defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): The last output of the model."""y, dt, embeddings = [], [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if hasattr(m, 'backbone'):x = m(x)if len(x) != 5:  # 0 - 5x.insert(0, None)for index, i in enumerate(x):if index in self.save:y.append(i)else:y.append(None)x = x[-1]  # 最后一个输出传给下一层else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)return x

2.8 步骤八

在task.py的大概200多行detectionmodel中,对如下参数进修改为640

2.9 步骤九

额外的步骤-如果计算量打印不下来,可以找到utils/torch_utils.py,修改以下参数值

注意!!!,这个步骤比较多,容易搞错,修改过程一定要多检查 

到此修改完成,复制下面的yaml文件运行即可

yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, pvt_v2_b1, []]  # 4- [-1, 1, SPPF, [1024, 5]]  # 5# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6- [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4- [-1, 3, C2f, [512]]  # 8- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9- [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3- [-1, 3, C2f, [256]]  # 11 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]] # 12- [[-1, 8], 1, Concat, [1]]  # 13 cat head P4- [-1, 3, C2f, [512]]  # 14 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]] # 15- [[-1, 5], 1, Concat, [1]]  # 16 cat head P5- [-1, 3, C2f, [1024]]  # 17 (P5/32-large)- [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

# 关于主干网络大家可以自行替换,数据集不同效果不同

不知不觉已经看完了哦,动动小手留个点赞吧--_--

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/878908.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI 与大模型:物流行业的变革力量

一、物流行业的现状与挑战 物流行业在现代经济中扮演着至关重要的角色&#xff0c;但目前也面临着诸多挑战。 在效率方面&#xff0c;交通拥堵是一个突出问题。许多城市道路容量不足&#xff0c;无法满足日益增长的货物运输需求&#xff0c;导致运输时间延长。例如&#xff0…

使用3DUNet训练自己的数据集(pytorch)— 医疗影像分割

代码:lee-zq/3DUNet-Pytorch: 3DUNet implemented with pytorch (github.com) 文章<cicek16miccai.pdf (uni-freiburg.de)3D U-Net: Learning Dense Volumetric Segmentation

高清4K短视频素材网站有哪些?推荐8个高清4K短视频素材网站

是不是还在为找不到合适的4K高清素材而苦恼&#xff1f;别急&#xff01;今天我为大家精心挑选了8个超级优秀的4K高清短视频素材网站&#xff0c;不仅能让你的视频质量爆表&#xff0c;还能大大提高账号的互动率和曝光度&#xff01;每一个推荐都是精心筛选过的&#xff0c;每一…

[物理专题]经典浮力题目的Fh图像绘制

这段代码用于绘制物体在液体中受到的浮力变化的图像&#xff0c;它有多个好处&#xff1a; 直观展示数据&#xff1a;通过图形化展示&#xff0c;可以直观地看到物体在液体中浸入深度与受到的浮力之间的关系。 教育和学习工具&#xff1a;这种类型的图像常用于教育目的&#x…

基于canal的Redis缓存双写

canal地址&#xff1a;alibaba/canal: 阿里巴巴 MySQL binlog 增量订阅&消费组件 (github.com)https://github.com/alibaba/canal 1. 准备 1.1 MySQL 查看主机二进制日志 show master status 查看binlog是否开启 show variables like log_bin 授权canal连接MySQL账号 …

【OpenCV3】图像的翻转、图像的旋转、仿射变换之图像平移、仿射变换之获取变换矩阵、透视变换

1 图像的放大与缩小 2 图像的翻转 3 图像的旋转 4 仿射变换之图像平移 5 仿射变换之获取变换矩阵 6 透视变换 1 图像的放大与缩小 resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) src: 要缩放的图片dsize: 缩放之后的图片大小, 元组和列表表示均可.dst: 可选参数, 缩…

【无标题】XSS安全防护:responseBody (输入流可重复读) 配置

接上文:配置XSS过滤器 XXS 安全防护:拦截器+注解实现校验-CSDN博客XSS(跨站脚本)攻击是一种网络安全威胁,允许攻击者注入恶意脚本到看似安全的网站。当用户浏览这些被注入恶意代码的网页时,恶意脚本会在用户的浏览器环境中执行,这可能导致多种安全问题,如窃取敏感数据、…

将添加功能的抽屉剥离,在父组件调用思路

一、新建组件 新建AddRoleEditerDrawer.vue<template><div><el-drawer v-model"dialog" title"添加角色" :before-close"handleClose" direction"rtl" colse"cancelForm"class"demo-drawer" moda…

「数学::质数」试除法 / Luogu P5736(C++)

概述 在质数的第一节我们来讲解试除法。 质数是指在大于1的自然数中只能被1和它自己整除的数。 我们可以利用这一除法性质对质数进行判定。 Luogu P5736&#xff1a; 输入 n 个不大于 10^5 的正整数。要求全部储存在数组中&#xff0c;去除掉不是质数的数字&#xff0c;依…

LLM Attention and Rotary Position Embedding(旋转位置编码)

旋转位置编码&#xff08;Rotary Position Embedding&#xff0c;RoPE&#xff09;是一种能够将相对位置信息依赖集成Attention计算里的方法。就是在做词表映射的时候不是单一的进行一个embedding计算&#xff0c;还考虑位置信息。 一些资料 [1] https://arxiv.org/pdf/2104.0…

面对养老困局我心安若素

“2025年&#xff0c;我们需要注意什么&#xff1f;是复杂的国际环境么&#xff1f;明年对于我国70岁以上的老年人来说这可不是主要关心的问题。反而有这两件事情需要他们来关注&#xff0c;如果70岁老人不提前做好准备&#xff0c;可能会有非常严重的后果......”这是昨天发表…

鸿蒙轻内核M核源码分析系列十五 CPU使用率CPUP

往期知识点记录&#xff1a; 鸿蒙&#xff08;HarmonyOS&#xff09;应用层开发&#xff08;北向&#xff09;知识点汇总 轻内核M核源码分析系列一 数据结构-双向循环链表 轻内核M核源码分析系列二 数据结构-任务就绪队列 鸿蒙轻内核M核源码分析系列三 数据结构-任务排序链表 轻…

国产脑机全面超越马斯克Nearlink

&#x1f4a5;&#x1f4a5;&#x1f4a5;刚刚&#xff0c;世界首富马斯克同学已经是完全懵逼了&#xff0c;心态都崩了&#xff01;因为今天爆出来了一个轰动了全世界科技界的大新闻&#xff0c;国产脑机在多个维度上全面超越了马斯克的Nearlink&#xff01; &#x1f4a5;&am…

SpringBoot2:请求处理原理分析-RESTFUL风格接口

一、RESTFUL简介 Rest风格支持&#xff08;使用HTTP请求方式&#xff0c;动词来表示对资源的操作&#xff09; 以前&#xff1a;/getUser 获取用户 /deleteUser 删除用户 /editUser 修改用户 /saveUser 保存用户 现在&#xff1a; /user GET-获取用户 DELETE-删除用户 PUT-修改…

数据仓库技术选型方案文档

关联博客&#xff1a; 数据仓库技术选型方案文档 Flink CDC MySQL数据同步到Doris表同步配置生成工具类 新版报表系统&#xff08;明细报表、看板、数据大屏&#xff09;方案&介绍 文章目录 数据仓库技术选型背景现状现状架构目标架构业务反馈&痛点问题&#xff1a;原因…

随手记:小程序体积超出2M包大小如何优化

小程序的包体积限制是2M&#xff0c;超出包大小如何优化 先简单列出&#xff0c;最近比较忙&#xff0c;后续优化明细&#xff0c;有着急的先留言踢我 1.分包 留几个主要的页面体积小的&#xff0c;剩下的在page.json中拆到subpackages中&#xff0c;简单举个例子 "page…

多维动态规划-面试高频!-最长公共子序列和最长公共子串、回文串-c++实现和详解

1143. 最长公共子序列 中等 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 &#xff0c;返回 0 。 一个字符串的 子序列 是指这样一个新的字符串&#xff1a;它是由原字符串在不改变字符的相对顺序的情况下删…

力扣1049-最后一块石头的重量II(Java详细题解)

题目链接&#xff1a;1049. 最后一块石头的重量 II - 力扣&#xff08;LeetCode&#xff09; 前情提要&#xff1a; 因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。 最近刚学完01背包&#xff0c;所以现在的题解都是以01背包问题为基础再来写的。 如果大家不懂…

FPGA实现串口升级及MultiBoot(二)FPGA启动流程

这个系列开篇肯定要先了解FPGA的启动流程&#xff0c;试想一下&#xff1a;我想实现MultiBoot&#xff0c;那么我应该在什么时候开始升级&#xff0c;升级失败后FPGA进行了哪些操作&#xff0c;以及怎么回到Golden区&#xff1f; 还有一个问题&#xff0c;就是我硬件打板回来&a…

Selenium 实现图片验证码识别

前言 在测试过程中&#xff0c;有的时候登录需要输入图片验证码。这时候使用Selenium进行自动化测试&#xff0c;怎么做图片验证码识别&#xff1f;本篇内容主要介绍使用Selenium、BufferedImage、Tesseract进行图片 验证码识别。 环境准备 jdk&#xff1a;1.8 tessdata&…