代码随想录学习 day54 图论 Bellman_ford 算法精讲

Bellman_ford 算法精讲

卡码网:94. 城市间货物运输 I
题目描述
某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。如果最低运输成本是一个负数,它表示在遵循最优路径的情况下,运输过程中反而能够实现盈利。城市 1 到城市 n 之间可能会出现没有路径的情况,同时保证道路网络中不存在任何负权回路。负权回路是指一系列道路的总权值为负,这样的回路使得通过反复经过回路中的道路,理论上可以无限地减少总成本或无限地增加总收益。输入描述第一行包含两个正整数,第一个正整数 n 表示该国一共有 n 个城市,第二个整数 m 表示这些城市中共有 m 条道路。接下来为 m 行,每行包括三个整数,s、t 和 v,表示 s 号城市运输货物到达 t 号城市,道路权值为 v(单向图)。输出描述如果能够从城市 1 到连通到城市 n, 请输出一个整数,表示运输成本。如果该整数是负数,则表示实现了盈利。如果从城市 1 没有路径可达城市 n,请输出 "unconnected"。输入示例:6 7
5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5

思路

本题依然是单源最短路问题,求 从 节点1 到节点n 的最小费用。 但本题不同之处在于 边的权值是有负数了。从 节点1 到节点n 的最小费用也可以是负数,费用如果是负数 则表示 运输的过程中 政府补贴大于运输成本。在求单源最短路的方法中,使用dijkstra 的话,则要求图中边的权值都为正数。我们在 dijkstra朴素版 中专门有讲解:为什么有边为负数 使用dijkstra就不行了。本题是经典的带负权值的单源最短路问题,此时就轮到Bellman_ford登场了,接下来我们来详细介绍Bellman_ford 算法 如何解决这类问题。该算法是由 R.Bellman 和L.Ford 在20世纪50年代末期发明的算法,故称为Bellman_ford算法。Bellman_ford算法的核心思想是 对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。

什么叫做松弛

看到这里,估计大家都比较晕了,为什么是 n-1 次,那“松弛”这两个字究竟是个啥意思?我们先来说什么是 “松弛”。《算法四》里面把这个操作叫做 “放松”, 英文版里叫做 “relax the edge”所以大家翻译过来,就是 “放松” 或者 “松弛” 。但《算法四》没有具体去讲这个 “放松” 究竟是个啥? 网上很多题解也没有讲题解里的 “松弛这条边,松弛所有边”等等 里面的 “松弛” 究竟是什么意思?这里我给大家举一个例子,每条边有起点、终点和边的权值。例如一条边,节点A 到 节点B 权值为value,如图:minDist[B] 表示 到达B节点 最小权值,minDist[B] 有哪些状态可以推出来?状态一: minDist[A] + value 可以推出 minDist[B] 状态二: minDist[B]本身就有权值 (可能是其他边链接的节点B 例如节点C,以至于 minDist[B]记录了其他边到minDist[B]的权值)minDist[B] 应为如何取舍。本题我们要求最小权值,那么 这两个状态我们就取最小的if (minDist[B] > minDist[A] + value) minDist[B] = minDist[A] + value也就是说,如果 通过 A 到 B 这条边可以获得更短的到达B节点的路径,即如果 minDist[B] > minDist[A] + value,那么我们就更新 minDist[B] = minDist[A] + value ,这个过程就叫做 “松弛” 。以上讲了这么多,其实都是围绕以下这句代码展开:if (minDist[B] > minDist[A] + value) minDist[B] = minDist[A] + value这句代码就是 Bellman_ford算法的核心操作。以上代码也可以这么写:minDist[B] = min(minDist[A] + value, minDist[B])如果大家看过代码随想录的动态规划章节,会发现 无论是背包问题还是子序列问题,这段代码(递推公式)出现频率非常高的。其实 Bellman_ford算法 也是采用了动态规划的思想,即:将一个问题分解成多个决策阶段,通过状态之间的递归关系最后计算出全局最优解。(如果理解不了动态规划的思想也无所谓,理解我上面讲的松弛操作就好)那么为什么是 n - 1次 松弛呢?这里要给大家模拟一遍 Bellman_ford 的算法才行,接下来我们来看看对所有边松弛 n - 1 次的操作是什么样的。我们依然使用minDist数组来表达 起点到各个节点的最短距离,例如minDist[3] = 5 表示起点到达节点3 的最小距离为5

模拟过程

初始化过程。起点为节点1, 起点到起点的距离为0,所以 minDist[1] 初始化为0其他节点对应的minDist初始化为max,因为我们要求最小距离,那么还没有计算过的节点 默认是一个最大数,这样才能更新最小距离。对所有边 进行第一次松弛: (什么是松弛,在上面我已经详细讲过)以示例给出的所有边为例:5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5接下来我们来松弛一遍所有的边。边:节点5 -> 节点6,权值为-2 ,minDist[5] 还是默认数值max,所以不能基于 节点5 去更新节点6,如图:(在复习一下,minDist[5] 表示起点到节点5的最短距离)边:节点1 -> 节点2,权值为1 ,minDist[2] > minDist[1] + 1 ,更新 minDist[2] = minDist[1] + 1 = 0 + 1 = 1 ,如图:边:节点5 -> 节点3,权值为1 ,minDist[5] 还是默认数值max,所以不能基于节点5去更新节点3 如图:边:节点2 -> 节点5,权值为2 ,minDist[5] > minDist[2] + 2 (经过上面的计算minDist[2]已经不是默认值,而是 1),更新 minDist[5] = minDist[2] + 2 = 1 + 2 = 3 ,如图:边:节点2 -> 节点4,权值为-3 ,minDist[4] > minDist[2] + (-3),更新 minDist[4] = minDist[2] + (-3) = 1 + (-3) = -2 ,如图:边:节点4 -> 节点6,权值为4 ,minDist[6] > minDist[4] + 4,更新 minDist[6] = minDist[4] + 4 = -2 + 4 = 2边:节点1 -> 节点3,权值为5 ,minDist[3] > minDist[1] + 5,更新 minDist[3] = minDist[1] + 5 = 0 + 5 = 5 ,如图:以上是对所有边进行一次松弛之后的结果。那么需要对所有边松弛几次才能得到 起点(节点1) 到终点(节点6)的最短距离呢?对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离。上面的距离中,我们得到里 起点达到 与起点一条边相邻的节点2 和 节点3 的最短距离,分别是 minDist[2] 和 minDist[3]这里有录友疑惑了 minDist[3] = 5,分明不是 起点到达 节点3 的最短距离,节点1 -> 节点2 -> 节点5 -> 节点3 这条路线 距离才是4。注意我上面讲的是 对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离,这里 说的是 一条边相连的节点。与起点(节点1)一条边相邻的节点,到达节点2 最短距离是 1,到达节点3 最短距离是5。而 节点1 -> 节点2 -> 节点5 -> 节点3 这条路线 是 与起点 三条边相连的路线了。
所以对所有边松弛一次 能得到 与起点 一条边相连的节点最短距离。那对所有边松弛两次 可以得到与起点 两条边相连的节点的最短距离。那对所有边松弛三次 可以得到与起点 三条边相连的节点的最短距离,这个时候,我们就能得到到达节点3真正的最短距离,也就是 节点1 -> 节点2 -> 节点5 -> 节点3 这条路线。那么再回归刚刚的问题,需要对所有边松弛几次才能得到 起点(节点1) 到终点(节点6)的最短距离呢?节点数量为n,那么起点到终点,最多是 n-1 条边相连。那么无论图是什么样的,边是什么样的顺序,我们对所有边松弛 n-1 次 就一定能得到 起点到达 终点的最短距离。其实也同时计算出了,起点 到达 所有节点的最短距离,因为所有节点与起点连接的边数最多也就是 n-1 条边。截止到这里,Bellman_ford 的核心算法思路,大家就了解的差不多了。共有两个关键点。“松弛”究竟是个啥?
为什么要对所有边松弛 n - 1 次 (n为节点个数) ?
那么Bellman_ford的解题解题过程其实就是对所有边松弛 n-1 次,然后得出得到终点的最短路径。

code c++ 1

理解上面讲解的内容,代码就更容易写了,本题代码如下:(详细注释)#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;int main() {int n, m, p1, p2, val;cin >> n >> m;vector<vector<int>> grid;// 将所有边保存起来for(int i = 0; i < m; i++){cin >> p1 >> p2 >> val;// p1 指向 p2,权值为 valgrid.push_back({p1, p2, val});}int start = 1;  // 起点int end = n;    // 终点vector<int> minDist(n + 1 , INT_MAX);minDist[start] = 0;for (int i = 1; i < n; i++) { // 对所有边 松弛 n-1 次for (vector<int> &side : grid) { // 每一次松弛,都是对所有边进行松弛int from = side[0]; // 边的出发点int to = side[1]; // 边的到达点int price = side[2]; // 边的权值// 松弛操作// minDist[from] != INT_MAX 防止从未计算过的节点出发if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) {minDist[to] = minDist[from] + price;}}}if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点else cout << minDist[end] << endl; // 到达终点最短路径}
时间复杂度: O(N * E) , N为节点数量,E为图中边的数量
空间复杂度: O(N) ,即 minDist 数组所开辟的空间关于空间复杂度,可能有录友疑惑,代码中数组grid不也开辟空间了吗? 为什么只算minDist数组的空间呢?grid数组是用来存图的,这是题目描述中必须要使用的空间,而不是我们算法所使用的空间。我们在讲空间复杂度的时候,一般都是说,我们这个算法所用的空间复杂度。

拓展

有录友可能会想,那我 松弛 n 次,松弛 n + 1次,松弛 2 * n 次会怎么样?其实没啥影响,结果不会变的,因为 题目中说了 “同时保证道路网络中不存在任何负权回路” 也就是图中没有 负权回路(在有向图中出现有向环 且环的总权值为负数)。那么我们只要松弛 n - 1次 就一定能得到结果,没必要在松弛更多次了。这里有疑惑的录友,可以加上打印 minDist数组 的日志,尝试一下,看看松弛 n 次会怎么样。你会发现 松弛 大于 n - 1次,minDist数组 就不会变化了。这里我给出打印日志的代码:

code c++ 打印日志

#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;int main() {int n, m, p1, p2, val;cin >> n >> m;vector<vector<int>> grid;// 将所有边保存起来for(int i = 0; i < m; i++){cin >> p1 >> p2 >> val;// p1 指向 p2,权值为 valgrid.push_back({p1, p2, val});}int start = 1;  // 起点int end = n;    // 终点vector<int> minDist(n + 1 , INT_MAX);minDist[start] = 0;for (int i = 1; i < n; i++) { // 对所有边 松弛 n-1 次for (vector<int> &side : grid) { // 每一次松弛,都是对所有边进行松弛int from = side[0]; // 边的出发点int to = side[1]; // 边的到达点int price = side[2]; // 边的权值// 松弛操作// minDist[from] != INT_MAX 防止从未计算过的节点出发if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) {minDist[to] = minDist[from] + price;}}cout << "对所有边松弛 " << i << "次" << endl;for (int k = 1; k <= n; k++) {cout << minDist[k] << " ";}cout << endl;}if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点else cout << minDist[end] << endl; // 到达终点最短路径}
通过打日志,大家发现,怎么对所有边进行第二次松弛以后结果就 不再变化了,那根本就不用松弛 n - 1 ?这是本题的样例的特殊性, 松弛 n-1 次 是保证对任何图 都能最后求得到终点的最小距离。如果还想不明白 我再举一个例子,用以下测试用例再跑一下。6 5
5 6 1
4 5 1
3 4 1
2 3 1
1 2 1打印结果:对所有边松弛 10 1 2147483647 2147483647 2147483647 2147483647
对所有边松弛 20 1 2 2147483647 2147483647 2147483647
对所有边松弛 30 1 2 3 2147483647 2147483647
对所有边松弛 40 1 2 3 4 2147483647
对所有边松弛 50 1 2 3 4 5
你会发现到 n-1 次 才打印出最后的最短路结果。关于上面的讲解,大家一定要多写代码去实验,验证自己的想法。至于 负权回路 ,我在下一篇会专门讲解这种情况,大家有个印象就好。

总结

Bellman_ford 是可以计算 负权值 的 单源 最短路 算法。其算法核心思路是对 所有边进行 n-1 次 松弛。 起点与起点n-1边相连的最短距离。弄清楚 什么是 松弛? 为什么要 n-1 次? 对理解Bellman_ford 非常重要。

code python 1

def main():n, m = [int(v) for v in input().split(' ')]grid = []for _ in range(m):v = [int(v) for v in input().split(' ')]grid.append(v)   # 将所有边保存起来  p1 指向 p2,权值为 valstart = 1  # 起点end = n  # 终点minDist = [float('Inf') for _ in range(n+1)]minDist[start] = 0  # 起点到起点的距离为 0for i in range(1, n): # n-1次松弛 起点 到终点1最多 n-1 条边for edge in grid:    # 每一次松弛,都是对所有边进行松弛s, t, price = edge   # 边的出发点, 边的到达点, 边的权值# 松弛操作# 防止从未计算过的节点开始出发# minDist[s] != float('Inf')if minDist[s] != float('Inf') and minDist[s] + price > minDist[t]:minDist[t] = minDist[s] + price# print(f"对所有边松弛{i}次")# for k in range(1, n+1):#     print(minDist[k], end=' ')# print('\n')if minDist[n] == float('Inf'):print('unconnected') # 不能到达终点else: print(minDist)   # 到达终点最短路径

code python 2 打印日志


def main1():# n, m = 6, 5# grid = [[5, 6, 1],[4, 5, 1],[3, 4, 1],[2, 3, 1],[1, 2, 1]]n, m = 6, 7grid = [[5, 6, -2],[1, 2, 1],[5, 3, 1],[2, 5, 2],[2, 4, -3],[4, 6, 4],[1, 3, 5]]start = 1  # 起点end = n  # 终点minDist = [float('Inf') for _ in range(n + 1)]minDist[start] = 0  # 起点到起点的距离为 0for i in range(1, n):  # n-1次松弛 起点 到终点1最多 n-1 条边for edge in grid:  # 每一次松弛,都是对所有边进行松弛s, t, price = edge  # 边的出发点, 边的到达点, 边的权值# 松弛操作# 防止从未计算过的节点开始出发# minDist[s] != float('Inf')if minDist[s] != float('Inf') and minDist[s] + price < minDist[t]:minDist[t] = minDist[s] + priceprint(f"对所有边松弛{i}次")for k in range(1, n + 1):print(minDist[k], end=' ')print('\n')if minDist[n] == float('Inf'):print('unconnected')  # 不能到达终点else:print(minDist)  # 到达终点最短路径

打印日志记录

"""n, m = 6, 5
grid = [[5, 6, 1],[4, 5, 1],[3, 4, 1],[2, 3, 1],[1, 2, 1]]对所有边松弛1次
0 1 inf inf inf inf
对所有边松弛2次
0 1 2 inf inf inf
对所有边松弛3次
0 1 2 3 inf inf
对所有边松弛4次
0 1 2 3 4 inf
对所有边松弛5次
0 1 2 3 4 5
[inf, 0, 1, 2, 3, 4, 5]n, m = 6, 7
grid = [[5, 6, -2],[1, 2, 1],[5, 3, 1],[2, 5, 2],[2, 4, -3],[4, 6, 4],[1, 3, 5]]
对所有边松弛1次
0 1 5 -2 3 2
对所有边松弛2次
0 1 4 -2 3 1
对所有边松弛3次
0 1 4 -2 3 1
对所有边松弛4次
0 1 4 -2 3 1
对所有边松弛5次
0 1 4 -2 3 1
[inf, 0, 1, 4, -2, 3, 1]
"""

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/873949.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【HarmonyOS】网络连接 - Http 请求数据

在日常开发应用当中&#xff0c;应用内部有很多数据并不是保存在应用内部&#xff0c;而是在服务端。所以就需要向服务端发起请求&#xff0c;由服务端返回数据。这种请求方式就是 Http 请求。 一、申请网络权限 在 module.json5 文件中&#xff0c;添加网络权限&#xff1a; …

手持式气象站:便携科技,掌握微观气象的利器

手持式气象站&#xff0c;顾名思义&#xff0c;是一种可以随身携带的气象监测设备。它小巧轻便&#xff0c;通常配备有温度、湿度、风速、风向、气压等多种传感器&#xff0c;能够实时测量并显示各种气象参数。不仅如此&#xff0c;它还具有数据存储、数据传输、远程控制等多种…

Django教程(003):orm操作数据库

文章目录 1 orm连接Mysql1.1 安装第三方模块1.2 ORM1.2.1、创建数据库1.2.2、Django连接数据库1.2.3、django操作表1.2.4、创建和修改表结构1.2.5、增删改查1.2.5.1 增加数据1.2.5.2 删除数据1.2.5.3 获取数据1.2.5.4 修改数据 1 orm连接Mysql Django为了使操作数据库更加简单…

Linux shell编程学习笔记65: nice命令 显示和调整进程优先级

0 前言 我们前面学习了Linux命令ps和top&#xff0c;命令的返回信息中包括优先序&#xff08;NI&#xff0c;nice&#xff09; &#xff0c;我们可以使用nice命令来设置进程优先级。 1 nice命令 的功能、格式和选项说明 1.1 nice命令 的功能 nice命令的功能是用于调整进程的…

AP ERP与汉得SRM系统集成案例(制药行业)

一、项目环境 江西某医药集团公司&#xff0c;是一家以医药产业为主营、资本经营为平台的大型民营企业集团。公司成立迄今&#xff0c;企业经营一直呈现稳健、快速发展的态势&#xff0c; 2008 年排名中国医药百强企业前 20 强&#xff0c;2009年集团总销售额约38亿元人民币…

原码、补码、反码、移码是什么?

计算机很多术语翻译成中文之后&#xff0c;不知道是译者出于什么目的&#xff0c;往往将其翻译成一个很难懂的名词。 奇怪的数学定义 下面是关于原码的“吐槽”&#xff0c;可以当作扩展。你可以不看&#xff0c;直接去下一章&#xff0c;没有任何影响。 原码的吐槽放在前面是…

配置单区域OSPF

目录 引言 一、搭建基础网络 1.1 配置网络拓扑图如下 1.2 IP地址表 二、测试每个网段都能单独连通 2.1 PC0 ping通Router1所有接口 2.2 PC1 ping通Router1所有接口 2.3 PC2 ping通Router2所有接口 2.4 PC3 ping通Router2所有接口 2.5 PC4 ping通Router3所有接口 2.…

Git仓库拆分和Merge

1. 问题背景 我们原先有一个项目叫open-api&#xff0c;后来想要做租户独立发展&#xff0c;每个租户独立成一个项目&#xff0c;比如租户akc独立部署一个akc-open-api&#xff0c;租户yhd独立部署一个yhd-open-api&#xff0c;其中大部分代码是相同的&#xff0c;少量租户定制…

2024牛客暑期多校训练营1——A,B

题解&#xff1a; 更新&#xff1a; k1的时候要乘n 代码&#xff1a; #include<bits/stdc.h> #define int long long using namespace std; const int N5e35; typedef long long ll; typedef pair<int,int> PII; int T; int n,m,mod; int fac[N][N]; int dp[N][…

设计模式使用场景实现示例及优缺点(结构型模式——外观模式)

在一个繁忙而复杂的城市中&#xff0c;有一座名为“技术森林”的巨大图书馆。这座图书馆里藏着各种各样的知识宝典&#xff0c;从古老的卷轴到现的电子书籍&#xff0c;无所不包。但是&#xff0c;图书馆之所以得名“技术森林”&#xff0c;是因为它的结构异常复杂&#xff0c;…

服务器注意事项

1. 远程服务器不允许关机&#xff0c;只能重启&#xff1b; 2. 重启服务器应关闭服务&#xff1b; 3. 不要在服务器访问高峰运行高负载命令&#xff1b; 4. 远程配置防火墙是不要把自己踢出服务器&#xff1b; 5. 制定合理的密码规范并定期更新&#xff1b; 6. 合理分配权…

笔记:Few-Shot Learning小样本分类问题 + 孪生网络 + 预训练与微调

内容摘自王老师的B站视频&#xff0c;大家还是尽量去看视频&#xff0c;老师讲的特别好&#xff0c;不到一小时的时间就缕清了小样本学习的基础知识点~Few-Shot Learning (1/3): 基本概念_哔哩哔哩_bilibili Few-Shot Learning&#xff08;小样本分类&#xff09; 假设现在每类…

【Linux】基础I/O——动静态库的制作

我想把我写的头文件和源文件给别人用 1.把源代码直接给他2.把我们的源代码想办法打包为库 1.制作静态库 1.1.制作静态库的过程 我们先看看怎么制作静态库的&#xff01; makefile 所谓制作静态库 需要将所有的.c源文件都编译为(.o)目标文件。使用ar指令将所有目标文件打包…

【前端】JavaScript入门及实战41-45

文章目录 41 嵌套的for循环42 for循环嵌套练习(1)43 for循环嵌套练习(2)44 break和continue45 质数练习补充 41 嵌套的for循环 <!DOCTYPE html> <html> <head> <title></title> <meta charset "utf-8"> <script type"…

谷粒商城实战笔记-38-前端基础-Vue-指令-单向绑定双向绑定

文章目录 一&#xff0c;插值表达式注意事项1&#xff1a;不适合复杂的逻辑处理注意事项2&#xff1a;插值表达式支持文本拼接注意事项3&#xff1a;插值表达式只能在标签体中 二&#xff0c;v-html和v-textv-textv-html区别总结&#xff1a;最佳实践 三&#xff0c;v-model复选…

WordPress杂技

WordPress杂技 WordPress页面构建器: Avada、Elementor、astra、 Elementor作为一款强大的页面构建工具。 Avada&#xff1a;是一款非常受欢迎的WordPress主题&#xff0c;它的设计理念是简洁、现代、响应式&#xff0c;Avada拥有丰富的模板和布局&#xff0c;可以轻松创建出…

多线程顺序执行

前言 现在面试中&#xff0c;不光会问力扣之类的算法&#xff0c;手撕多线程问题也被提上了日程。多线程之间的顺序执行是一个高频的面试手撕题&#xff0c;而且在实际应用中也会有用武之地。因此在这里&#xff0c;我们考虑使用不同的方式来实现多线程的顺序执行。在本文中&a…

Jackson 库简介--以及数据脱敏

Jackson 是一个流行的 Java JSON 处理库&#xff0c;它提供了将 Java 对象与 JSON 数据相互转换的功能。Jackson 的主要功能包括&#xff1a; 序列化&#xff1a;将 Java 对象转换为 JSON 字符串。反序列化&#xff1a;将 JSON 字符串转换为 Java 对象。 Jackson 提供了以下几…

C2W2.Assignment.Parts-of-Speech Tagging (POS).Part2

理论课&#xff1a;C2W2.Part-of-Speech (POS) Tagging and Hidden Markov Models 文章目录 2 Hidden Markov Models2.1 Generating MatricesCreating the A transition probabilities matrixExercise 03Create the B emission probabilities matrixExercise 04 理论课&#x…

FastAPI 学习之路(五十六)将token缓存到redis

在之前的文章中&#xff0c;FastAPI 学习之路&#xff08;二十九&#xff09;使用&#xff08;哈希&#xff09;密码和 JWT Bearer 令牌的 OAuth2&#xff0c;FastAPI 学习之路&#xff08;二十八&#xff09;使用密码和 Bearer 的简单 OAuth2&#xff0c;FastAPI 学习之路&…