SVM 技能测试:25 个 MCQ 用于测试数据科学家的 SVM

SVM 技能测试:25 个 MCQ 用于测试数据科学家的 SVM(2024 年更新)
在这里插入图片描述

一、介绍

你可以把机器学习算法想象成一个装满斧头、剑和刀片的军械库。你有各种各样的工具,但你应该学会在正确的时间使用它们。打个比方,将“线性回归或逻辑回归”视为一把能够有效地切片和切块数据但无法处理高度复杂数据的剑。同样,深度学习神经网络是一把光剑,可以处理任何复杂的数据。相反,“支持向量机”或SVM(一种机器学习算法)就像一把锋利的刀——它适用于较小的数据集,但在它们上,它可以更强大、更强大地构建模型。

目录
关于技能测试
有用的资源
SVM 技能测试问题和答案
结论
关于技能测试
此技能测试专为您设计,用于测试您对 SVM、监督学习模型、其技术和应用的了解。这些数据科学面试问题对于那些希望获得数据科学家工作的人很有用。超过550人报名参加了测试。如果您是错过此技能测试的人之一,这里有问题和解决方案。

您可以在此处访问分数。超过350人参加了技能测试,获得的最高分是25分。

这里有一些资源可以深入了解该主题。

机器学习算法基础(使用 Python 和 R 代码)
从示例(以及代码)了解支持向量机算法
使用 Python 和 R 的支持向量机 (SVM) 免费课程
如果你刚刚开始学习机器学习和数据科学,这里有一门课程可以帮助你学习主数据科学和机器学习模型。在下面的链接中查看详细的课程结构:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/873604.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 739, 82, 106

文章目录 739. 每日温度题目链接标签思路代码 82. 删除排序链表中的重复元素 II题目链接标签思路代码 106. 从中序与后序遍历序列构造二叉树题目链接标签思路二叉树的三种遍历值与索引的映射对于后序遍历的使用对于中序遍历的使用 代码 739. 每日温度 题目链接 739. 每日温度…

jenkins 插件版本冲突

一、Jenkins安装git parameter 插件重启后报错与临时解决方案 cd /root/.jenkins cp config.xml config.xml.bak vim config.xml <authorizationStrategy class"hudson.security.FullControlOnceLoggedInAuthorizationStrategy"><denyAnonymousReadAcces…

【工具使用】EMACS的verilog_mode脚本

#工作记录# 俗话说不会玩连连看的工程师不是一个好的SoC工程师。 在做集成工作的时候&#xff0c;集成连线估计是一件比较繁琐且容易出错的事情&#xff0c;连线类型定义出错、位宽问题、连线众多等等问题&#xff0c;此时使用由Veripool带来的verilog_mode简直是令人神清气爽…

基于牛顿-拉夫逊优化算法(Newton-Raphson-based optimizer, NBRO)的无人机三维路径规划

牛顿-拉夫逊优化算法(Newton-Raphson-based optimizer, NBRO)是一种新型的元启发式算法&#xff08;智能优化算法&#xff09;&#xff0c;该成果由Sowmya等人于2024年2月发表在中科院2区Top SCI期刊《Engineering Applications of Artificial Intelligence》上。 1、算法原理…

制造运营管理系统(MOM系统),企业实现先进制造的关键一步

随着全球制造业的快速发展&#xff0c;企业对于生产效率和成本控制的要求日益增高。在这个背景下&#xff0c;制造运营管理系统&#xff08;MOM系统&#xff09;成为了企业提升竞争力的关键工具。盘古信息作为业内领先的智能制造解决方案提供商&#xff0c;其MOM系统更是以其卓…

首批通过 | 百度通过中国信通院H5端人脸识别安全能力评估工作

2024年5月&#xff0c;中国信息通信研究院人工智能研究所依托中国人工智能产业发展联盟安全治理委员会&#xff08;AIIA&#xff09;、“可信人脸应用守护计划”及多家企业代表共同开展《H5端人脸识别线上身份认证安全能力要求及评估方法》的编制工作&#xff0c;并基于该方法开…

COD论文笔记 Deep Gradient Learning for Efficient Camouflaged 2022

动机 这篇论文的动机在于解决伪装目标检测(COD)中的一个关键问题&#xff1a;在复杂背景下&#xff0c;伪装目标与背景的边界模糊&#xff0c;使得检测变得极其困难。现有的方法&#xff0c;如基于边界或不确定性的模型&#xff0c;通常仅响应于伪装目标的稀疏边缘&#xff0c…

如何定位Milvus性能瓶颈并优化

假设您拥有一台强大的计算机系统或一个应用&#xff0c;用于快速执行各种任务。但是&#xff0c;系统中有一个组件的速度跟不上其他部分&#xff0c;这个性能不佳的组件拉低了系统的整体性能&#xff0c;成为了整个系统的瓶颈。在软件领域中&#xff0c;瓶颈是指整个路径中吞吐…

价格战再起:OpenAI 发布更便宜、更智能的 GPT-4o Mini 模型|TodayAI

OpenAI 今日推出了一款名为 GPT-4o Mini 的新模型&#xff0c;这款模型较轻便且成本更低&#xff0c;旨在为开发者提供一个经济实惠的选择。与完整版模型相比&#xff0c;GPT-4o mini 在成本效益方面表现卓越&#xff0c;价格仅为每百万输入 tokens 15 美分和每百万输出 tokens…

某4G区域终端有时驻留弱信号小区分析

这些区域其实是长时间处于连接态的电信卡4G终端更容易出现。 出现问题时都是band1 100频点下发了针对弱信号的1650频点的连接态A4测量事件配置&#xff08;其阈值为-106&#xff09;。而这个条件很容易满足&#xff0c;一旦下发就会切到band3 1650频点。 而1650频点虽然下发ban…

神经网络之卷积神经网络

目录 一、卷积神经网络概述&#xff1a;1.卷积层&#xff1a;1.1卷积核与神经元&#xff1a;1.2卷积层作用&#xff1a;1.3多通道概念&#xff1a; 2.池化层&#xff1a;2.1池化层作用&#xff1a; 3.隐藏层与卷积层、池化层关系&#xff1a; 一、卷积神经网络概述&#xff1a;…

Flutter TextFiled频繁采集“剪切板信息”

在使用Flutter开发者&#xff0c;输入框是必不可少的功能&#xff0c;最近产品出了需要&#xff0c;要求输入框记住用户登录过的手机号&#xff0c;并在输入框输入时提示出来&#xff0c;这是个很基础的功能&#xff0c;但是在通过测试验收发布到应用市场时&#xff0c;被Vivo拒…

Spring Boot项目中使用MyBatis Generator (MBG) 自动生成Mapper文件

Spring Boot项目中使用MyBatis Generator (MBG) 自动生成Mapper文件可以很大程度上减少编码。本文着重介绍如何在实战中使用MGB自动生成Mapper文件 1. 添加MyBatis Generator依赖 在pom.xml中添加必要的依赖 <dependency><groupId>org.mybatis.spring.boot</…

uniapp中给data中的变量赋值报错

排查了一上午&#xff0c;原本以为是赋值的这个变量有一个键名是空字符串的问题&#xff0c;后来发现是因为在data中定义变量是写的是{}&#xff0c;如果写成null就不会报错了&#xff0c;具体原因不清楚为什么

逻辑回归(Logistic Regression,LR)

分类和回归是机器学习的两个主要问题。 分类处理的是离散数据回归处理的是连续数据 线性回归&#xff1a;回归 拟合一条线预测函数&#xff1a; 逻辑回归&#xff1a;分类——找到一条线可以将不同类别区分开 虽然称为逻辑回归&#xff0c;但是实际是一种分…

2024 HNCTF PWN(hide_flag Rand_file_dockerfile Appetizers TTOCrv_)

文章目录 参考hide_flag思路exp Rand_file_dockerfile libc 2.31思路exp Appetizers glibc 2.35绕过关闭标准输出实例客户端 关闭标准输出服务端结果exp TTOCrv_&#x1f3b2; glibc 2.35逆向DT_DEBUG获得各个库地址随机数思路exp 参考 https://docs.qq.com/doc/p/641e8742c39…

从零开始学量化~Ptrade使用教程(七)——期权相关操作

期权交易 可点击证券代码右侧的选&#xff0c;进入期权选择菜单。通过选择标的商品&#xff0c;认购期权和认沽期权中间的选项&#xff08;包括代码、成交价、幅度%、隐波%、内在价值、时间价值等&#xff09;&#xff0c;以及认购期权或认沽期权&#xff0c;选择所需的期权标的…

计算机网络入门 -- 常用网络协议

计算机网络入门 – 常用网络协议 1.分类 1.1 模型回顾 计算机网络细分可以划为七层模型&#xff0c;分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。而上三层可以划为应用层中。 1.2 分类 1.2.1 应用层 为用户的应用进程提供网络通信服务&#xff0…

深入浅出WebRTC—DelayBasedBwe

WebRTC 中的带宽估计是其拥塞控制机制的核心组成部分&#xff0c;基于延迟的带宽估计是其中的一种策略&#xff0c;它主要基于延迟变化推断出可用的网络带宽。 1. 总体架构 1.1. 静态结构 1&#xff09;DelayBasedBwe 受 GoogCcNetworkController 控制&#xff0c;接收其输入…

buu--web做题(4)

目录 [BJDCTF2020]ZJCTF&#xff0c;不过如此 [BUUCTF 2018]Online Tool [BJDCTF2020]ZJCTF&#xff0c;不过如此 <?phperror_reporting(0); $text $_GET["text"]; $file $_GET["file"]; if(isset($text)&&(file_get_contents($text,r)&q…