Linux进程信号总结

目录

信号入门

生活中的信号

技术应用角度的信号

信号的发送与记录

信号处理常见方式概述 

产生信号 

通过终端按键产生信号

通过系统函数向进程发信号 

由软件条件产生信号 

​编辑 由硬件异常产生信号

阻塞信号

 信号其他相关常见概念 

在内核中的表示 

sigset_t 

信号集操作函数

sigprocmask 

sigpending

​编辑

捕捉信号

 内核空间与用户空间 

内核态与用户态  

内核如何实现信号的捕捉

sigaction 

可重入函数 

volatile 

SIGCHLD信号 


信号入门

生活中的信号

  • 你在网上买了很多件商品,在等待不同商品快递的到来。但即便快递还没有到来,你也知道快递到了的时候应该怎么处理快递,也就是你能“识别快递”。
  • 当快递到达目的地了,你收到了快递到来的通知,但是你不一定要马上下楼取快递,也就是说取快递的行为并不是一定要立即执行,可以理解成在“在合适的时候去取”。
  • 在你收到快递到达的通知,再到你拿到快递期间,是有一个时间窗口的,在这段时间内你并没有拿到快递,但是你知道快递已经到了,本质上是你“记住了有一个快递要去取”。
  • 当你时间合适,顺利拿到快递之后,就要开始处理快递了,而处理快递的方式有三种:1、执行默认动作(打开快递,使用商品)2、执行自定义动作(快递是帮别人买的,你要将快递交给他)3、忽略(拿到快递后,放在一边继续做自己的事)。
  • 快递到来的整个过程,对你来讲是异步的,你不能确定你的快递什么时候到。

技术应用角度的信号

现在我们编写如下死循环并运行:

#include<iostream>
#include<cstdio>
#include<unistd.h>
int main()
{while(1){std::cout<<"I am a process,I am waiting a signal!"<<std::endl;sleep(1);}return 0;
}

 不难看出上面的死循环在代码层面是永远无法结束程序的,那是否还有别的办法?对于死循环来说,最好的方式就是使用Ctrl+C对其进行终止。

为什么使用Ctrl+C后,该进程就终止了? 

实际上当用户按Ctrl+C时,这个键盘输入会产生一个硬中断,被操作系统获取并解释成信号(Ctrl+C被解释成2号信号),然后操作系统将2号信号发送给目标前台进程,当前台进程收到2号信号后就会退出。

我们可以使用signal函数对2号信号进行捕捉,证明当我们按Ctrl+C时进程确实是收到了2号信号。使用signal函数时,我们需要传入两个参数,第一个是需要捕捉的信号编号,第二个是对捕捉信号的处理方法,该处理方法的参数是int,返回值是void。

例如,下面的代码中将2号信号进行了捕捉,当该进程运行起来后,若该进程收到了2号信号就会打印出收到信号的信号编号。

#include<iostream>
#include<cstdio>
#include<unistd.h>
#include <signal.h>
void handler(int signo)
{std::cout<<"Get a signal: "<<signo<<std::endl;
}int main()
{signal(2,handler);while(1){std::cout<<"I am a process,I am waiting a signal!"<<std::endl;sleep(1);}return 0;
}

此时当该进程收到2号信号后,就会执行我们给出的handler方法,而不会像之前一样直接退出了,因为此时我们已经将2号信号的处理方式由默认改为了自定义了。 

 同时也证明了,当我们按Ctrl+C时进程确实是收到了2号信号。

信号的发送与记录

我们使用kill -l命令可以查看Linux当中的信号列表。

其中1~31号信号是普通信号,34~64号信号是实时信号,普通信号和实时信号各自都有31个,每个信号都有一个编号和一个宏定义名称:

信号的记录 

 来记录信号是否产生可以用一个简单的32位位图实现:

其中比特位的位置代表信号的编号,而比特位的内容就代表是否收到对应信号,比如第2个比特位是1就表明收到了2号信号。 

信号是如何产生的?

一个进程收到信号,本质就是该进程内的信号位图被修改了,也就是该进程的数据被修改了,而只有操作系统才有资格修改进程的数据,因为操作系统是进程的管理者。也就是说,信号的产生本质上就是操作系统直接去修改目标进程的task_struct中的信号位图。

注意: 信号只能由操作系统发送,但信号发送的方式有多种。

信号处理常见方式概述 

  1. 执行该信号的默认处理动作。
  2. 提供一个信号处理函数,要求内核在处理该信号时切换到用户态执行这个处理函数,这种方式称为捕捉(Catch)一个信号。
  3. 忽略该信号。

在Linux当中,我们可以通过man手册查看各个信号默认的处理动作。

man 7 signal

产生信号 

通过终端按键产生信号

也就是通过键盘快捷键,之前给大家演示过Ctrl+C终止进程,其实Ctrl+\也可以终止进程:

 按Ctrl+\实际上是向进程发送3号信号SIGQUIT,它也终止了进程,那它和2号信号有什么区别呢?

查看这两个信号的默认处理动作,可以看到这两个信号的Action是不一样的,2号信号是Term,而3号信号是Core。

 Term和Core都代表着终止进程,但是Core在终止进程的时候会进行一个动作,那就是核心转储。

 什么是核心转储?

在云服务器中,核心转储是默认被关掉的,我们可以通过使用ulimit -a命令查看当前资源限制的设定。

其中,第一行显示core文件的大小为0,即表示核心转储是被关闭的。 

我们可以通过ulimit -c size命令来设置core文件的大小。

core文件的大小设置完毕后,就相当于将核心转储功能打开了。

此时如果我们再使用Ctrl+\对进程进行终止,就会发现终止进程后会显示core dumped。 

并且会在当前路径下生成一个core文件。

核心转储功能有什么用? 

当我们的代码出错了,我们最关心的是我们的代码是什么原因出错的。如果我们的代码运行结束了,那么我们可以通过退出码来判断代码出错的原因,而如果一个代码是在运行过程中出错的,那么我们也要有办法判断代码是什么原因出错的。

当我们的程序在运行过程中崩溃了,我们一般会通过调试来进行逐步查找程序崩溃的原因。而在某些特殊情况下,我们会用到核心转储,核心转储指的是操作系统在进程收到某些信号而终止运行时,将该进程地址空间的内容以及有关进程状态的其他信息转而存储到一个磁盘文件当中,这个磁盘文件也叫做核心转储文件,一般命名为core.pid。

而核心转储的目的就是为了在调试时,方便问题的定位。

 如何运用核心转储进行调试?

 很明显,如下代码发生除0错误。

#include<iostream>
#include<cstdio>
#include<unistd.h>
#include <signal.h>
int main()
{std::cout<<"I am runing..."<<std::endl;sleep(3);int x = 2/0;//除0!!!return 0;
}

使用gdb对当前可执行程序进行调试,然后直接使用core-file core文件命令加载core文件,即可判断出该程序在终止时收到了8号信号,并且定位到了产生该错误的具体代码。

注意: 事后用调试器检查core文件以查清错误原因,这种调试方式叫做事后调试。

core dump标志 

 回想一下进程等待函数waitpid函数的第二个参数:

waitpid函数的第二个参数status是一个输出型参数,用于获取子进程的退出状态。status是一个整型变量,但status不能简单的当作整型来看待,status的不同比特位所代表的信息不同,具体细节如下(只关注status低16位比特位):

 

打开Linux的核心转储功能,并编写下列代码。代码中父进程使用fork函数创建了一个子进程,子进程所执行的代码当中存在野指针问题,当子进程执行到int x = 1/0时,必然会被操作系统所终止并在终止时进行核心转储。此时父进程使用waitpid函数便可获取到子进程退出时的状态,根据status的第7个比特位便可得知子进程在被终止时是否进行了核心转储。

#include<iostream>
#include<cstdio>
#include<unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
{pid_t id = fork();if(id == 0){std::cout<<"I am a child process"<<std::endl;sleep(3);int x = 1/0;exit(0);}int status = 0;waitpid(-1,&status,0);printf("exitCode:%d, coreDump:%d, signal:%d\n",(status >> 8) & 0xff, (status >> 7) & 1, status & 0x7f);return 0;
}

 可以看到,所获取的status的第7个比特位为1,即可说明子进程在被终止时进行了核心转储。

因此,core dump标志实际上就是用于表示程序崩溃的时候是否进行了核心转储。

其他组合按键 

我们可以通过以下代码,将1~31号信号全部进行捕捉,将收到信号后的默认处理动作改为打印收到信号的编号。 

#include<iostream>
#include<cstdio>
#include<unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>void handler(int signo)
{std::cout<<"Get a signal: "<<signo<<std::endl;
}int main()
{for(int i=1;i<=31;i++){signal(i,handler);}while(1){std::cout<<"I am a process,I am waiting a signal!"<<std::endl;sleep(1);}return 0;
}

此时,当我们按下组合按键Ctrl+C、Ctrl+\、Ctrl+Z后,便可以得知这些组合按键分别是向前台进程发送几号信号了。

 注意 有些信号是不能被捕捉的,比如9号信号。因为如果所有信号都能被捕捉的话,那么进程就可以将所有信号全部进行捕捉并将动作设置为忽略,此时该进程将无法被杀死,即便是操作系统。

通过系统函数向进程发信号 

kill函数

实际上kill命令是通过调用kill函数实现的,kill函数可以给指定的进程发送指定的信号,kill函数的函数原型如下:

 kill函数用于向进程ID为pid的进程发送sig号信号,如果信号发送成功,则返回0,否则返回-1。

我们可以用kill函数模拟实现一个kill命令,实现逻辑如下: 

#include<iostream>
#include<cstdio>
#include<unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>int main(int argc,char* argv[])
{if(argc!=3){std::cout<<"Used Fail"<<std::endl;}pid_t pid = atoi(argv[1]);int signo = atoi(argv[2]);kill(pid,signo);
}

 为了让生成的可执行程序在执行时不用带上路径,我们可以将当前路径导入环境变量PATH当中。

被杀死的程序代码:

#include<iostream>
#include<cstdio>
#include<unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>int main()
{pid_t pid = getpid();while(1){std::cout<<"I am a process,my pid: "<<pid<<std::endl;sleep(1);}return 0;
}

此时我们便模拟实现了一个kill命令,该命令的使用方式为mykill 进程ID 信号编号

 raise函数

raise函数用于给当前进程发送sig号信号,如果信号发送成功,则返回0,否则返回一个非零值。 

例如,下列代码当中用raise函数每隔一秒向自己发送一个2号信号。 

#include<iostream>
#include<cstdio>
#include<unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>void handler(int signo)
{std::cout<<"Get a signal: "<<signo<<std::endl;
}int main()
{signal(2,handler);while(1){raise(2);sleep(1);}return 0;
}

运行结果就是该进程每隔一秒收到一个2号信号。

abort函数 

abort函数可以给当前进程发送SIGABRT信号,也就是6号信号,使得当前进程异常终止。

例如,下列代码当中每隔一秒向当前进程发送一个SIGABRT信号。

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>void handler(int signo)
{std::cout<<"Get a signal: "<<signo<<std::endl;
}int main()
{signal(6,handler);while(1){sleep(1);abort();}return 0;
}

与之前不同的是,虽然我们对SIGABRT信号进行了捕捉,并且在收到SIGABRT信号后执行了我们给出的自定义方法,但是当前进程依然是异常终止了。

注意: abort函数的作用是异常终止进程,exit函数的作用是正常终止进程,而abort本质是通过向当前进程发送SIGABRT信号而终止进程的,因此使用exit函数终止进程可能会失败,但使用abort函数终止进程总是成功的。 

由软件条件产生信号 

SIGPIPE信号

SIGPIPE信号实际上就是一种由软件条件产生的信号,当进程在使用管道进行通信时,读端进程将读端关闭,而写端进程还在一直向管道写入数据,那么此时写端进程就会收到SIGPIPE信号进而被操作系统终止。

例如,下面代码当中,创建匿名管道进行父子进程之间的通信,其中父进程是读端进程,子进程是写端进程,但是一开始通信父进程就将读端关闭了,那么此时子进程在向管道写入数据时就会收到SIGPIPE信号,进而被终止。

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
{int fd[2] = { 0 };if (pipe(fd) < 0){ //使用pipe创建匿名管道perror("pipe");return 1;}pid_t id = fork(); //使用fork创建子进程if (id == 0){//childclose(fd[0]); //子进程关闭读端//子进程向管道写入数据const char* msg = "hello father, I am child...";int count = 10;while (count--){write(fd[1], msg, strlen(msg));sleep(1);}close(fd[1]); //子进程写入完毕,关闭文件exit(0);}//fatherclose(fd[1]); //父进程关闭写端close(fd[0]); //父进程直接关闭读端(导致子进程被操作系统杀掉)int status = 0;waitpid(id, &status, 0);printf("child get signal:%d\n", status & 0x7F); //打印子进程收到的信号return 0;
}

运行代码后,即可发现子进程在退出时收到的是13号信号,即SIGPIPE信号。

 SIGALRM信号

 调用alarm函数可以设定一个闹钟,也就是告诉操作系统在若干时间后发送SIGALRM信号给当前进程。

alarm函数的作用就是,让操作系统在seconds秒之后给当前进程发送SIGALRM信号,SIGALRM信号的默认处理动作是终止进程。 

alarm函数的返回值:

  • 若调用alarm函数前,进程已经设置了闹钟,则返回上一个闹钟时间的剩余时间,并且本次闹钟的设置会覆盖上一次闹钟的设置。
  • 如果调用alarm函数前,进程没有设置闹钟,则返回值为0。

例如,我们可以用下面的代码,测试自己的云服务器一秒时间内可以将一个变量累加到多大。 

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>int main()
{int count = 0;alarm(1);while(1){std::cout<<"count = "<<count<<std::endl;count++;}return 0;
}

运行代码后,可以发现我当前的云服务器在一秒内可以将一个变量累加到六万左右。 

但实际上我当前的云服务器在一秒内可以执行的累加次数远大于两万,那为什么上述代码运行结果比实际结果要小呢? 

主要原因有两个,首先,由于我们每进行一次累加就进行了一次打印操作,而与外设之间的IO操作所需的时间要比累加操作的时间更长,其次,由于我当前使用的是云服务器,因此在累加操作后还需要将累加结果通过网络传输将服务器上的数据发送过来,因此最终显示的结果要比实际一秒内可累加的次数小得多。

为了尽可能避免上述问题,我们可以先让count变量一直执行累加操作,直到一秒后进程收到SIGALRM信号后再打印累加后的数据。

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>int count = 0;void handler(int signo)
{std::cout<<"count = "<<count<<std::endl;
}int main()
{signal(SIGALRM,handler);alarm(1);while(1){count++;}return 0;
}

此时可以看到,count变量在一秒内被累加的次数变成了五亿多,由此也证明了,与计算机单纯的计算相比较,计算机与外设进行IO时的速度是非常慢的。 

 由硬件异常产生信号

 为什么C/C++程序会崩溃?

当我们程序当中出现类似于除0、野指针、越界之类的错误时,为什么程序会崩溃?本质上是因为进程在运行过程中收到了操作系统发来的信号进而被终止,那操作系统是如何识别到一个进程触发了某种问题的呢? 

我们知道,CPU当中有一堆的寄存器,当我们需要对两个数进行算术运算时,我们是先将这两个操作数分别放到两个寄存器当中,然后进行算术运算并把结果写回寄存器当中。此外,CPU当中还有一组寄存器叫做状态寄存器,它可以用来标记当前指令执行结果的各种状态信息,如有无进位、有无溢出等等。而操作系统是软硬件资源的管理者,在程序运行过程中,若操作系统发现CPU内的某个状态标志位被置位,而这次置位就是因为出现了某种除0错误而导致的,那么此时操作系统就会马上识别到当前是哪个进程导致的该错误,并将所识别到的硬件错误包装成信号发送给目标进程,本质就是操作系统去直接找到这个进程的task_struct,并向该进程的位图中写入8信号,写入8号信号后这个进程就会在合适的时候被终止。

那对于下面的野指针问题,或者越界访问的问题时,操作系统又是如何识别到的呢?

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>int main()
{std::cout<<"I am running"<<std::endl;sleep(2);int* p = nullptr;*p = 100;return 0;
}

首先我们必须知道的是,当我们要访问一个变量时,一定要先经过页表的映射,将虚拟地址转换成物理地址,然后才能进行相应的访问操作。

其中页表属于一种软件映射关系,而实际上在从虚拟地址到物理地址映射的时候还有一个硬件叫做MMU,它是一种负责处理CPU的内存访问请求的计算机硬件,因此映射工作不是由CPU做的,而是由MMU做的,但现在MMU已经集成到CPU当中了。

当需要进行虚拟地址到物理地址的映射时,我们先将页表的左侧的虚拟地址导给MMU,然后MMU会计算出对应的物理地址,我们再通过这个物理地址进行相应的访问。

而MMU既然是硬件单元,那么它当然也有相应的状态信息,当我们要访问不属于我们的虚拟地址时,MMU在进行虚拟地址到物理地址的转换时就会出现错误,然后将对应的错误写入到自己的状态信息当中,这时硬件上面的信息也会立马被操作系统识别到,进而将对应进程发送SIGSEGV信号。

总结一下:
C/C++程序会崩溃,是因为程序当中出现的各种错误最终一定会在硬件层面上有所表现,进而会被操作系统识别到,然后操作系统就会发送相应的信号将当前的进程终止。

阻塞信号

 信号其他相关常见概念 

  • 实际执行信号的处理动作,称为信号递达(Delivery)。
  • 信号从产生到递达之间的状态,称为信号未决(pending)。
  • 进程可以选择阻塞(Block)某个信号。
  • 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作。
  • 需要注意的是,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后的一种处理动作。

在内核中的表示 

  • 每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作 

  • SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会在改变处理动作之后再接触阻塞。
  • SIGQUIT信号未产生过,但一旦产生SIGQUIT信号,该信号将被阻塞,它的处理动作是用户自定义函数sighandler。如果在进程解除对某信号的阻塞之前,这种信号产生过多次,POSIX.1允许系统递达该信号一次或多次。Linux是这样实现的:普通信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里,这里只讨论普通信号。

总结一下:

  1. 在block位图中,比特位的位置代表某一个信号,比特位的内容代表该信号是否被阻塞。
  2. 在pending位图中,比特位的位置代表某一个信号,比特位的内容代表是否收到该信号。
  3. handler表本质上是一个函数指针数组,数组的下标代表某一个信号,数组的内容代表该信号递达时的处理动作,处理动作包括默认、忽略以及自定义。
  4. block、pending和handler这三张表的每一个位置是一一对应的。

sigset_t 

根据信号在内核中的表示方法,每个信号的未决标志只有一个比特位,非0即1,如果不记录该信号产生了多少次,那么阻塞标志也只有一个比特位。

因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储。在我当前的云服务中,sigset_t类型的定义如下:(不同操作系统实现sigset_t的方案可能不同)

#define _SIGSET_NWORDS (1024 / (8 * sizeof (unsigned long int)))
typedef struct
{unsigned long int __val[_SIGSET_NWORDS];
} __sigset_t;typedef __sigset_t sigset_t;

sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态。 

  • 在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞。
  • 在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。

 阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。

信号集操作函数

sigset_t类型对于每种信号用一个bit表示“有效”或“无效”,至于这个类型内部如何存储这些bit则依赖于系统的实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_t变量,而不应该对它的内部数据做任何解释,比如用printf直接打印sigset_t变量是没有意义的。

#include <signal.h>int sigemptyset(sigset_t *set);int sigfillset(sigset_t *set);int sigaddset(sigset_t *set, int signum);int sigdelset(sigset_t *set, int signum);int sigismember(const sigset_t *set, int signum);  

函数解释:

  • sigemptyset函数:初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含任何有效信号。
  • sigfillset函数:初始化set所指向的信号集,使其中所有信号的对应bit置位,表示该信号集的有效信号包括系统支持的所有信号。
  • sigaddset函数:在set所指向的信号集中添加某种有效信号。
  • sigdelset函数:在set所指向的信号集中删除某种有效信号。
  • sigemptyset、sigfillset、sigaddset和sigdelset函数都是成功返回0,出错返回-1。
  • sigismember函数:判断在set所指向的信号集中是否包含某种信号,若包含则返回1,不包含则返回0,调用失败返回-1

注意: 在使用sigset_t类型的变量之前,一定要调用sigemptyset或sigfillset做初始化,使信号处于确定的状态。

例如,我们可以按照如下方式使用这些函数。

#include <stdio.h>
#include <signal.h>int main()
{sigset_t s; //用户空间定义的变量sigemptyset(&s);sigfillset(&s);sigaddset(&s, SIGINT);sigdelset(&s, SIGINT);sigismember(&s, SIGINT);return 0;
}

注意: 代码中定义的sigset_t类型的变量s,与我们平常定义的变量一样都是在用户空间定义的变量,所以后面我们用信号集操作函数对变量s的操作实际上只是对用户空间的变量s做了修改,并不会影响进程的任何行为。因此,我们还需要通过系统调用,才能将变量s的数据设置进操作系统。 

sigprocmask 

 sigprocmask函数可以用于读取或更改进程的信号屏蔽字(阻塞信号集)

 参数说明:

  • 如果oset是非空指针,则读取进程当前的信号屏蔽字通过oset参数传出。
  • 如果set是非空指针,则更改进程的信号屏蔽字,参数how指示如何更改。
  • 如果oset和set都是非空指针,则先将原来的信号屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。

假设当前的信号屏蔽字为mask,下表说明了how参数的可选值及其含义:

选项含义
SIG_BLOCKset包含了我们希望添加到当前信号屏蔽字的信号,相当于mask=mask|set
SIG_UNBLOCKset包含了我们希望从当前信号屏蔽字中解除阻塞的信号,相当于mask=mask|~set
SIG_SETMASK设置当前信号屏蔽字为set所指向的值,相当于mask=set

返回值说明:

  • sigprocmask函数调用成功返回0,出错返回-1。

注意: 如果调用sigprocmask解除了对当前若干个未决信号的阻塞,则在sigprocmask函数返回前,至少将其中一个信号递达。

sigpending

 sigpending函数可以用于读取进程的未决信号集。

sigpending函数读取当前进程的未决信号集,并通过set参数传出。该函数调用成功返回0,出错返回-1。

下面我们来做一个简单的实验,实验步骤如下:

  1. 先用上述的函数将2号信号进行屏蔽(阻塞)。
  2. 使用kill命令或组合按键向进程发送2号信号。
  3. 此时2号信号会一直被阻塞,并一直处于pending(未决)状态。
  4. 使用sigpending函数获取当前进程的pending信号集进行验证。

代码如下:

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>void printpending(sigset_t* pending)
{for(int i =31;i>=1;i--){if(sigismember(pending,i)){std::cout<<"1";}else{std::cout<<"0";}}
}int main()
{sigset_t set,old_set;sigemptyset(&set);sigemptyset(&old_set);sigaddset(&set,2);sigprocmask(SIG_SETMASK,&set,&old_set);sigset_t pending;sigpending(&pending);while(1){sigpending(&pending);printpending(&pending);sleep(1);}return 0;
}

可以看到,程序刚刚运行时,因为没有收到任何信号,所以此时该进程的pending表一直是全0,而当我们使用快捷键Ctrl+c向该进程发送2号信号后,由于2号信号是阻塞的,因此2号信号一直处于未决状态,所以我们看到pending表中的第二个数字一直是1。 

为了看到2号信号递达后pending表的变化,我们可以设置一段时间后,自动解除2号信号的阻塞状态,解除2号信号的阻塞状态后2号信号就会立即被递达。因为2号信号的默认处理动作是终止进程,所以为了看到2号信号递达后的pending表,我们可以将2号信号进行捕捉,让2号信号递达时执行我们所给的自定义动作。

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>void printpending(sigset_t* pending)
{for(int i =31;i>=1;i--){if(sigismember(pending,i)){std::cout<<"1";}else{std::cout<<"0";}}std::cout<<std::endl;
}void handler(int signo)
{std::cout<<"Get a signal: "<<signo<<std::endl;
}int main()
{signal(2,handler);//捕捉二号信号sigset_t set,old_set;//初始化sigemptyset(&set);sigemptyset(&old_set);sigaddset(&set,2);sigprocmask(SIG_SETMASK,&set,&old_set);//屏蔽二号信号sigset_t pending;sigpending(&pending);//获取pending表int count = 0;while(1){sigpending(&pending);printpending(&pending);count++;if(count==10){sigprocmask(SIG_SETMASK,&old_set,NULL);//恢复二号信号std::cout<<"恢复信号屏蔽字"<<std::endl;}sleep(1);}return 0;
}

此时就可以看到,进程收到2号信号后,该信号在一段时间内处于未决状态,当解除2号信号的屏蔽后,2号信号就会立即递达,执行我们所给的自定义动作,而此时的pending表也变回了全0。 

捕捉信号

 内核空间与用户空间 

每一个进程都有自己的进程地址空间,该进程地址空间由内核空间和用户空间组成:

  • 用户所写的代码和数据位于用户空间,通过用户级页表与物理内存之间建立映射关系。
  • 内核空间存储的实际上是操作系统代码和数据,通过内核级页表与物理内存之间建立映射关系。

如何理解进程切换? 

  1. 在当前进程的进程地址空间中的内核空间,找到操作系统的代码和数据。
  2. 执行操作系统的代码,将当前进程的代码和数据剥离下来,并换上另一个进程的代码和数据。

注意: 当你访问用户空间时你必须处于用户态,当你访问内核空间时你必须处于内核态。所有进程共用一个内核级页表,每个进程独有一个属于自己的用户级页表,也就是说用户级页表可以有很多份,而内核级页表只有一份。

内核态与用户态  

  • 内核态通常用来执行操作系统的代码,是一种权限非常高的状态。
  • 用户态是一种用来执行普通用户代码的状态,是一种受监管的普通状态。

 进程收到信号之后,并不是立即处理信号,而是在合适的时候,这里所说的合适的时候实际上就是指,从内核态切换回用户态的时候。

内核态和用户态之间是进行如何切换的?

 从用户态切换为内核态通常有如下几种情况:

  1. 需要进行系统调用时。
  2. 当前进程的时间片到了,导致进程切换。
  3. 产生异常、中断、陷阱等。

与之相对应,从内核态切换为用户态有如下几种情况:

  1. 系统调用返回时。
  2. 进程切换完毕。
  3. 异常、中断、陷阱等处理完毕

 其中,由用户态切换为内核态我们称之为陷入内核。每当我们需要陷入内核的时,本质上是因为我们需要执行操作系统的代码,比如系统调用函数是由操作系统实现的,我们要进行系统调用就必须先由用户态切换为内核态。

内核如何实现信号的捕捉

当我们在执行主控制流程的时候,可能因为某些情况而陷入内核,当内核处理完毕准备返回用户态时,就需要进行信号pending的检查。(此时仍处于内核态,有权力查看当前进程的pending位图)

在查看pending位图时,如果发现有未决信号,并且该信号没有被阻塞,那么此时就需要该信号进行处理。

如果待处理信号的处理动作是默认或者忽略,则执行该信号的处理动作后清除对应的pending标志位,如果没有新的信号要递达,就直接返回用户态,从主控制流程中上次被中断的地方继续向下执行即可。

但如果待处理信号是自定义捕捉的,即该信号的处理动作是由用户提供的,那么处理该信号时就需要先返回用户态执行对应的自定义处理动作,执行完后再通过特殊的系统调用sigreturn再次陷入内核并清除对应的pending标志位,如果没有新的信号要递达,就直接返回用户态,继续执行主控制流程的代码。

 总结:

当待处理信号是自定义捕捉时的情况比较复杂,可以借助下图进行记忆:

其中,该图形与直线有几个交点就代表在这期间有几次状态切换,而箭头的方向就代表着此次状态切换的方向,图形中间的圆点就代表着检查pending表。

小问:当识别到信号的处理动作是自定义时,能直接在内核态执行用户空间的代码吗? 

理论上来说是可以的,因为内核态是一种权限非常高的状态,但是绝对不能这样设计。

如果允许在内核态直接执行用户空间的代码,那么用户就可以在代码中设计一些非法操作,比如清空数据库等,虽然在用户态时没有足够的权限做到清空数据库,但是如果是在内核态时执行了这种非法代码,那么数据库就真的被清空了,因为内核态是有足够权限清空数据库的。

也就是说,不能让操作系统直接去执行用户的代码,因为操作系统无法保证用户的代码是合法代码,即操作系统不信任任何用户。

sigaction 

捕捉信号除了用前面用过的signal函数之外,我们还可以使用sigaction函数对信号进行捕捉。

sigaction函数可以读取和修改与指定信号相关联的处理动作,该函数调用成功返回0,出错返回-1。

参数说明:

  • signum代表指定信号的编号。
  • 若act指针非空,则根据act修改该信号的处理动作。
  • 若oldact指针非空,则通过oldact传出该信号原来的处理动作。

其中,参数act和oldact都是结构体指针变量,该结构体的定义如下: 

struct sigaction {void(*sa_handler)(int);void(*sa_sigaction)(int, siginfo_t *, void *);sigset_t   sa_mask;int        sa_flags;void(*sa_restorer)(void);
};

结构体的第一个成员sa_handler: 

  • 将sa_handler赋值为常数SIG_IGN传给sigaction函数,表示忽略信号。
  • 将sa_handler赋值为常数SIG_DFL传给sigaction函数,表示执行系统默认动作。
  • 将sa_handler赋值为一个函数指针,表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函数。

注意: 所注册的信号处理函数的返回值为void,参数为int,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然这是一个回调函数,不是被main函数调用,而是被系统所调用。

结构体的第三个成员sa_mask: 

首先需要说明的是,当某个信号的处理函数被调用,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么它会被阻塞到当前处理结束为止。

如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时,自动恢复原来的信号屏蔽字。

例如,下面我们用sigaction对二号信号进行捕捉,将3号(Ctrl+\)和9号信号加入sa_mask,捕捉函数一直sleep,进入二号的捕捉函数时,我们再发送3号和9号信号:

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>struct sigaction act,oact;
void handler(int signo)
{std::cout<<"Get signal: "<<signo<<std::endl;std::cout<<"2号信号正在处理..."<<std::endl;sleep(100);
}int main()
{pid_t pid = getpid();sigaddset(&act.sa_mask,3);sigaddset(&act.sa_mask,9);act.sa_handler = handler;sigaction(2,&act,&oact);while(1){std::cout<<"I am a process,my pid: "<<pid<<std::endl;sleep(1);}return 0;
}

可以发现2号信号处理时,3号信号无法杀死进程,而9号信号仍可以杀死进程,说明有些信号是无法被屏蔽的,比如说刚才的9号信号。

可重入函数 

下面主函数中调用insert函数向链表中插入结点node1,某信号处理函数中也调用了insert函数向链表中插入结点node2,乍眼一看好像没什么问题。

下面我们来分析一下,对于下面这个链表。

1、首先,main函数中调用了insert函数,想将结点node1插入链表,但插入操作分为两步,刚做完第一步的时候,因为硬件中断使进程切换到内核,再次回到用户态之前检查到有信号待处理,于是切换到sighandler函数。

2、而sighandler函数中也调用了insert函数,将结点node2插入到了链表中,插入操作完成第一步后的情况如下 

3、当结点node2插入的两步操作都做完之后从sighandler返回内核态,此时链表的布局如下:

4、再次回到用户态就从main函数调用的insert函数中继续往下执行,即继续进行结点node1的插入操作。

最终结果是,main函数和sighandler函数先后向链表中插入了两个结点,但最后只有node1结点真正插入到了链表中,而node2结点就再也找不到了,造成了内存泄漏。

像上例这样,insert函数被不同的控制流调用(main函数和sighandler函数使用不同的堆栈空间,它们之间不存在调用与被调用的关系,是两个独立的控制流程),有可能在第一次调用还没返回时就再次进入该函数,我们将这种现象称之为重入。

而insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数我们称之为不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称之为可重入(Reentrant)函数。 

如果一个函数符合以下条件之一则是不可重入的:

  1. 调用了malloc或free,因为malloc也是用全局链表来管理堆的。
  2. 调用了标志I/O库函数,因为标准I/O库的很多实现都以不可重入的方式使用全局数据结构。

volatile 

volatile是C语言的一个关键字,该关键字的作用是保持内存的可见性。

在下面的代码中,我们对2号信号进行了捕捉,当该进程收到2号信号时会将全局变量flag由0置1。也就是说,在进程收到2号信号之前,该进程会一直处于死循环状态,直到收到2号信号时将flag置1才能够正常退出。

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>int flag =0;
void handler(int signo)
{std::cout<<"Get a signal: "<<signo<<std::endl;flag = 1;
}int main()
{signal(2,handler);while(!flag);std::cout<<"Normal Quit"<<std::endl;return 0;
}

该程序的运行过程好像都在我们的意料之中,但实际并非如此。代码中的main函数和handler函数是两个独立的执行流,而while循环是在main函数当中的,在编译器编译时只能检测到在main函数中对flag变量的使用。

此时编译器检测到在main函数中并没有对flag变量做修改操作,在编译器优化级别较高的时候,因为在main函数里没有发现对flag进行修改,编译器就觉得没必要每次拿flag时都从内存中拿一遍过来,而是直接在一开始将flag设置进寄存器里面,所以flag在cpu眼里永远都是寄存器里的0。 

此时main函数在检测flag时只检测寄存器里面的值,而handler执行流只是将内存中flag的值置为1了,那么此时就算进程收到2号信号也不会跳出死循环。 

在编译代码时携带-O3选项使得编译器的优化级别最高,此时再运行该代码,就算向进程发生2号信号,该进程也不会终止。

面对这种情况,我们就可以使用volatile关键字对flag变量进行修饰,告知编译器,对flag变量的任何操作都必须真实的在内存中进行,即保持了内存的可见性。 

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>volatile int flag =0;
void handler(int signo)
{std::cout<<"Get a signal: "<<signo<<std::endl;flag = 1;
}int main()
{signal(2,handler);while(!flag);std::cout<<"Normal Quit"<<std::endl;return 0;
}

此时就算我们编译代码时携带-O3选项,当进程收到2号信号将内存中的flag变量置1时,main函数执行流也能够检测到内存中flag变量的变化,进而跳出死循环正常退出。

SIGCHLD信号 

为了避免出现僵尸进程,父进程需要使用wait或waitpid函数等待子进程结束,父进程可以阻塞等待子进程结束,也可以非阻塞地查询的是否有子进程结束等待清理,即轮询的方式。采用第一种方式,父进程阻塞就不能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一下,程序实现复杂。

其实,子进程在终止时会给父进程发生SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自定义SIGCHLD信号的处理动作,这样父进程就只需专心处理自己的工作,不必关心子进程了,子进程终止时会通知父进程,父进程在信号处理函数中调用wait或waitpid函数清理子进程即可。

例如,下面代码中对SIGCHLD信号进行了捕捉,并将在该信号的处理函数中调用了waitpid函数对子进程进行了清理。

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>void handler(int signo)
{std::cout<<"Get a signal "<<signo<<std::endl;int ret =0;while((ret = waitpid(-1,NULL,WNOHANG) > 0)){std::cout<<"Wait child process success"<<std::endl;}
}int main()
{signal(SIGCHLD,handler);pid_t id = fork();if(id == 0){//childstd::cout<<"I am a child process,I am running..."<<std::endl;sleep(3);exit(1);}//fatherwhile(1);return 0;
}

注意:

  1. SIGCHLD属于普通信号,记录该信号的pending位只有一个,如果在同一时刻有多个子进程同时退出,那么在handler函数当中实际上只清理了一个子进程,因此在使用waitpid函数清理子进程时需要使用while不断进行清理。
  2. 使用waitpid函数时,需要设置WNOHANG选项,即非阻塞式等待,否则当所有子进程都已经清理完毕时,由于while循环,会再次调用waitpid函数,此时就会在这里阻塞住。

此时父进程就只需专心处理自己的工作,不必关心子进程了,子进程终止时父进程收到SIGCHLD信号,会自动进行该信号的自定义处理动作,进而对子进程进行清理。 

事实上,由于UNIX的历史原因,要想不产生僵尸进程还有另外一种办法:父进程调用signal或sigaction函数将SIGCHLD信号的处理动作设置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用signal或sigaction函数自定义的忽略通常是没有区别的,但这是一个特列。此方法对于Linux可用,但不保证在其他UNIX系统上都可用。

例如,下面代码中调用signal函数将SIGCHLD信号的处理动作自定义为忽略。

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdlib>int main()
{signal(SIGCHLD,SIG_IGN);pid_t id = fork();if(id == 0){std::cout<<"I am a child process,I am running..."<<std::endl;sleep(3);exit(0);}while(1);return 0;
}

此时子进程在终止时会自动被清理掉,不会产生僵尸进程,也不会通知父进程。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/872168.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

输出调节求解跟踪问题(二阶线性系统)

本文研究了一种基于增广系统的领导者-跟随者控制框架&#xff0c;旨在实现跟随者系统对领导者参考信号的精确跟踪。首先&#xff0c;建立了跟随者和领导者的独立状态空间方程&#xff0c;分别描述了它们的动态行为和输出关系。随后&#xff0c;通过将两者的状态空间方程结合成增…

在Windows环境下安装pycharm

Python环境搭建 第一步下载安装python 等待安装完成 验证python是否安装成功 Python开发工具安装部署 JetBrains: Essential tools for software developers and teams PyCharm: the Python IDE for data science and web development 下载社区版本的PyCharm 双击打开下载好的…

【运维资料大全】运维全套资料整理(word原件完整版)

信息安全类、运维类资料整合&#xff1a; 1. 等保测评模板 2. 安全检查表&#xff08;IDS&#xff0c;Linux&#xff0c;数据库&#xff0c;Tomcat&#xff0c;防火墙等&#xff09; 3. 服务器安全巡检表 4. 网络定向攻击风险分析表 5. 应用系统常规检测表 6. 企业漏洞管理50个…

TS 入门(三):Typescript函数与对象类型

目录 前言回顾1. 函数类型a. 基本函数类型b. 可选参数和默认参数c. 剩余参数 2. 对象类型a. 基本对象类型b. 可选属性和只读属性 3. 类型别名和接口a. 类型别名b. 接口扩展 4. 类型推断和上下文类型a. 类型推断b. 上下文类型 扩展知识点&#xff1a;函数重载结语 前言 在前两章…

【银河麒麟操作系统】虚机重启lvs丢失现象分析及处理建议

了解银河麒麟操作系统更多全新产品&#xff0c;请点击访问麒麟软件产品专区&#xff1a;https://product.kylinos.cn 环境及现象描述 40台虚机强制重启后&#xff0c;其中8台虚机找不到逻辑卷导致启动异常&#xff0c;后续通过pvcreate 修复重建pv&#xff0c;激活vg和lv并修复…

WSL-Ubuntu20.04训练环境配置

1.YOLOv8训练环境配置 训练环境配置的话就仍然以YOLOv8为例&#xff0c;来说明如何配置深度学习训练环境。这部分内容比较简单&#xff0c;主要是安装miniAnaconda以及安装torch和torchvision. 首先是miniAnaconda的安装(参考官网的教程Miniconda — Anaconda )&#xff0c;执行…

CH552G使用IAP下载

常见下载中的方式ISP&#xff0c;IAP&#xff0c;ICP 参考&#xff0c;CH552G中文手册&#xff0c;参考1 ISP&#xff1a;In System Programing&#xff0c;在系统编程。是常见的&#xff0c;使用软件&#xff0c;先将某个引脚&#xff08;例如boot&#xff09;连接到合适的电…

【笔记】一起齿轮箱的故障和相应的数学模拟实验

1.齿轮箱故障一例 出处&#xff1a;设备的故障识别 GearBox的频谱图&#xff0c;原作者不知道是从哪里拷贝来的&#xff0c;待会儿确认一下。 齿轮啮合频率GMF等于齿数乘以齿轮转速频率&#xff1a; ★齿轮啮合频率两边有边频&#xff0c;间距为1X&#xff08;这是由冲击响应…

17-5 向量数据库之野望5 - 使用 Rust 实现矢量数据库

​​​​​​ 与存储标量数据(如整数、字符串等)的传统数据库不同,矢量数据库旨在有效地存储和检索矢量数据——表示多维空间中的点的数值集合。 本文将探讨如何在 Rust 中实现基本的向量数据库。 让我们开始吧!🦀 什么是矢量数据库? 矢量数据库是一种针对存储和查询…

十年笃行,拥抱世界,JumpServer开源堡垒机v4.0正式发布

2024年7月15日&#xff0c;JumpServer开源堡垒机正式发布v4.0版本。在JumpServer开源堡垒机v4.0版本的设计过程中&#xff0c;JumpServer开源项目组继续秉持“内外兼修”的原则&#xff0c;并且开始迈步走向全球化&#xff0c;同时进一步提升用户的使用体验&#xff0c;真正用心…

25_Vision Transformer原理详解

1.1 简介 Vision Transformer (ViT) 是一种将Transformer架构从自然语言处理(NLP)领域扩展到计算机视觉(CV)领域的革命性模型&#xff0c;由Google的研究人员在2020年提出。ViT的核心在于证明了Transformer架构不仅在处理序列数据&#xff08;如文本&#xff09;方面非常有效&…

怎样去除视频上的水印和文字,视频水印文本移除教程

在观看和分享视频时&#xff0c;我们经常会遇到带有水印或额外文字的情况。这些标记有时是为了版权保护&#xff0c;有时则是平台的标识&#xff0c;但在某些情况下&#xff0c;它们可能会干扰视频的观赏体验。本文将向你介绍常见的视频水印类型以及如何使用简鹿水印助手去除这…

浅谈安数云智能安全运营管理平台:DCS-SOAR

SOAR&#xff08;security orchestration&#xff0c;automation and response&#xff09;&#xff0c;由Gartner于2015年提出&#xff0c;最初的含义是安全运营、分析与报告。2017年&#xff0c;Gartner又重新定义了SOAR的能力&#xff0c;包括安全编排、安全自动化和安全响应…

Purple Pi OH在Android11下测试WiFi和LAN的TCP和UDP传输速率

本文适用于在Purple Pi OH在Andriod11下如何测试WiFi和LAN的TCP和UDP传输速率。触觉智能的Purple Pi OH鸿蒙开源主板&#xff0c;是华为Laval官方社区主荐的一款鸿蒙开发主板。 该主板主要针对学生党&#xff0c;极客&#xff0c;工程师&#xff0c;极大降低了开源鸿蒙开发者的…

AI安全系列——[第五空间 2022]AI(持续更新)

最近很长时间没有更新&#xff0c;其实一直在学习AI安全&#xff0c;我原以为学完深度学习之后再学AI安全会更加简单些&#xff0c;但是事实证明理论转实践还是挺困难的&#xff0c;但是请你一定要坚持下去&#xff0c;因为“不是所有的坚持都有结果&#xff0c;但总有一些坚持…

QT简介、安装与运行

QT5.9.0 安装 下载地址&#xff1a;https://download.qt.io/archive/qt/ 安装过程&#xff0c;直接点击下一步&#xff0c;设置勾选如下&#xff1a; 下载VS编译插件地址如下&#xff08;已安装vs&#xff09;&#xff1a; https://download.qt.io/archive/vsaddin/2.3.2/

【ARMv8/v9 异常模型入门及渐进 9.1 - FIQ 和 IRQ 打开和关闭】

请阅读【ARMv8/v9 ARM64 System Exception】 文章目录 FIQ/IRQ Enable and Disable汇编指令详解功能解释使用场景和注意事项 FIQ/IRQ Enable and Disable 在ARMv8/v9架构中&#xff0c;可以使用下面汇编指令来打开FIQ和 IRQ,代码如下&#xff1a; asm volatile ("msr da…

敏捷营销在AI智能名片微信小程序中的应用探索

摘要&#xff1a;在数字化转型的浪潮中&#xff0c;企业面临着前所未有的挑战与机遇。AI智能名片微信小程序作为一种创新的营销工具&#xff0c;以其便捷性、智能化和高效性&#xff0c;正逐步成为企业连接客户、推广品牌的新宠。然而&#xff0c;如何在快速变化的市场环境中&a…

docker 安装 onlyoffice

1.文档地址 Installing ONLYOFFICE Docs for Docker on a local server - ONLYOFFICE 2.安装onlyoffice docker run -i -t -d -p 9000:8000 --restartalways -e JWT_ENABLEDfalse onlyoffice/documentserver 如果发现镜像无法下载,可以尝试更换镜像源 {"registry-mir…